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Short Abstract 

This deliverable reports on the construction of the Draft catalogue of XMANAI AI and Graph ML models, 
as a collection of baseline algorithms and explanation methods that will be used to develop explainable 
solutions to address 4 generic manufacturing application scenarios, represented by the XMANAI 
demonstrators: i) Production Optimization, ii) Product Demand Forecasting, iii) Process/Product quality 
Optimization, and iv) Process Optimization and Semi-Autonomous Planning. A landscape analysis on the 
relevant application domains is conducted, followed by the technical description of the problems to be 
tackled and the identification of relevant data sources, leading to the selection of Hybrid and Graph 
baseline models that will populate the initial release of the XMANAI Explainable AI platform. 

http://www.ai4manufacturing.eu/
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Executive Summary 
Deliverable D4.1 “Draft Catalogue of XMANAI AI and Graph Machine Learning Models” provides the 
initial selection of AI and Graph Machine Learning (ML) baseline algorithms that will populate the 
Models Catalogue of the XMANAI Explainable AI Platform. The novelty introduced by the XMANAI 
project mainly lies in the construction of flexible, eXplainable AI (XAI) solutions to concrete 
manufacturing problems by means of composite algorithms, comprised of “black-box” models 
equipped with additional interpretability layers.  

This document was produced as a result of combined activities realizing tasks T4.1 “Graph Machine 
Learning Algorithm Modelling and Training” and T4.2 “Hybrid Explainable AI Modelling and Training”. 
The research results presented herein represent the efforts of scientific/technical partners involved 
in the WP4 activities, in close collaboration to the 4 industrial pilots, during months M9-M15 of the 
XMANAI project. Regarding the demonstrators, this document summarizes the analysis of their AI and 
explainability needs, technical challenges as well as their security and ethics aspects. As a result of 
these activities, 48 Hybrid ML models and 25 Graph ML Models are provided as part of the Draft 
Catalogue. These models are complemented with 15 explainability tools that help to interpret the 
predictions made by the models. 

The conducted research is focused on the 4 manufacturing application scenarios reflected by the 
XMANAI demonstrators, in direct consideration of business requirements elaborated in D6.1-
“Demonstrators Requirements” and the technical requirements in D1.2 “XMANAI Concept Detailing, 
Initial Requirements, Usage Scenarios and Draft MVP”. Building on the findings of D1.1-“State of the 
Art Review in XMANAI Research Domains”, a landscape analysis is conducted over AI solutions for 
Industrial Data Insights generation, in the application scenarios of the XMANAI demonstrators: i) 
Production Optimization, ii) Product Demand Forecasting, iii) Process/Product quality Optimization, and iv) 
Process Optimization and Semi-Autonomous Planning. With the aim to extend D1.1 results towards a more 
technical perspective, the analysis here explores the literature to review the adoption of various families 
of algorithms to solve specific problems in the context of the 4 generic application scenarios. 

An in-depth analysis is further performed, delving into the technical details of the 4 application 
scenarios, as expected to be realized by the XMANAI demonstrators, including: i) the comprehension of 
each use case within the realistic environment of the demonstrator, ii) the identification of specific tasks 
and sub-tasks to undertake in order to address each use case, iii) the mapping of identified problems to 
relevant data sources that will be provided by the demonstrators to solve them, iv) the mathematical 
formulation and modelling of the problems at hand, by means of inputs and expected outputs, v) the 
comprehension of the different explainability needs that are expected to be satisfied by the XMANAI 
solutions, vi) the identification of technical challenges and limitations to overcome in order to reach the 
desired XAI solution.  

Based on the results of the analysis, a set of Hybrid and Graph ML baseline models is selected with the 
scope to cover the needs of all the identified problems, as regards both performance and interpretability. 
To that end, baseline models are constructed as composites of AI and Graph ML primary algorithms, 
coupled with an additional explainability component. Under this approach, the XMANAI baseline models 
are anticipated to overcome the trade-off between AI model performance and the interpretability of the 
model’s behaviour by non-expert humans, since different components are dedicated to the optimization 
of the performance and the provision of high-quality explanations. The selected models are presented by 
means of algorithm cards, summarizing information on the model’s insights in four axes: i) the predictive 
layer, represented by the primary AI/Graph ML algorithm, ii) the explainability layer, represented by the 
selected explainability method, iii) the description of the general application scenario, iv) the description 
of the application scenario in the experimental setting of the XMANAI demonstrators.  

Finally, the overview of the Draft Catalogue is presented, with respect to the selected families of AI 
algorithms and explainability methods. The Draft Catalogue will serve as the basis for the development of 
concrete XAI solutions to the XMANAI pilots, in the context of further WP4 activities. 
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1 Introduction 
This deliverable will provide the list of baseline models, that are generally appropriate for the 
manufacturing domain and for the different pilot scenarios to be supported by XMANAI, identifying 
their main parameters and structural elements, as well as their inputs, outputs and usage scenarios. 
As a result of the different actions carried out in the course to produce this deliverable, a draft 
catalogue of baseline models will be provided. This catalogue will be the basis for the work that will 
be performed on the rest of the WP4 deliverables jointly with the demonstrators’ data. 

1.1 XMANAI Project Overview 
Despite the indisputable benefits that AI can bring in society as well as in any industry, humans 
typically have little visibility and knowledge on how AI systems make any decisions or predictions due 
to the “black-box effect” in which many of the machine learning/deep learning algorithms are opaque 
and not possible to be examined after their execution to understand how and why a decision has been 
made. In this context, XMANAI aims at rendering humans (especially, business experts in 
manufacturing) capable of fully understanding how decisions have been reached and what has 
influenced them in order to trust the AI systems. 

Building on the latest AI advancements and technological breakthroughs, XMANAI shall focus its 
research activities on Explainable AI (XAI) in order to make the AI models, step-by-step understandable 
and actionable at multiple layers (data-model-results) in order to: (a) accelerate business adoption (“if 
manufacturers do not understand why/how a decision/prediction is reached, they shall not 
adopt/enforce it”), and (b) foster improved human/machine intelligence collaboration in 
manufacturing decision making without crossing lines, while ensuring regulatory compliance. In order 
to produce "glass box" AI models that are explainable to a "human-in-the-loop", without greatly 
sacrificing AI performance, XMANAI will deliver appropriate methods and techniques to address a 
number of AI-related challenges that currently constitute significant data scientists’ pains (such as 
lifecycle management, security and trusted sharing of complex AI assets including data and AI models), 
and to effectively navigate the AI’s “transparency paradox”.  

XMANAI aims to design, develop and deploy a novel Explainable AI Platform powered by explainable 
AI models that inspire trust, augment human cognition and solve concrete manufacturing problems 
with value-based explanations. Adopting the mentality that “AI systems should think like humans, act 
like humans, think rationally, and act rationally”, a catalogue of hybrid and graph AI models is built, 
fine-tuned and validated in XMANAI at 2 levels: (a) baseline AI models that will be reusable to address 
any manufacturing problem, and (b) trained AI models that have been trained and validated for the 
different problems that the XMANAI demonstrators target, based on collaboration between humans 
(data scientists, data engineers and business experts). A bundle of innovative manufacturing 
applications and services are also built on top of the XMANAI Explainable AI Platform, leveraging the 
XMANAI catalogue of baseline and trained AI models. 

XMANAI will validate its AI platform, its catalogue of hybrid and graph AI models and its manufacturing 
apps in 4 realistic, exemplary manufacturing demonstrators with high impact in: (a) optimizing 
performance and manufacturing products’ and processes’ quality, (b) accurately forecasting product 
demand, (c) production optimization and predictive maintenance, and (d) enabling agile planning 
processes. Through a scalable approach towards Explainable and Trustful AI as dictated and supported 
in XMANAI, manufacturers will be able to develop a robust AI capability that is less artificial and more 
intelligent at human and corporate levels in a win-win manner. 
 

1.2 Deliverable Purpose and Scope 
Deliverable D4.1:” Draft Catalogue of XMANAI AI and Graph Machine Learning Models” reports on the 
results of “WP4 - Novel Artificial Intelligence Algorithms for Industrial Data Insights Generation” 
efforts, towards the identification of a set of baseline Hybrid and Graph ML algorithms that are 
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suitable to address common use cases in the manufacturing domain. The selected baseline algorithms 
are coupled with interpretable components, in order to populate the XMANAI Explainable AI Platform 
and support the needs of the XMANAI manufacturing demonstrators. 

The purpose of the present deliverable D4.1 is to describe in detail the construction of the ”Draft 
Catalogue of XMANAI AI and Graph Machine Learning Models”, as a result of consortium partners’ 
collaborative efforts in the context of WP4 activities. This work realizes the initial stages of tasks T4.1 
“Graph Machine Learning Algorithm Modelling and Training” and T4.2 “Hybrid Explainable AI 
Modelling and Training”, which run in parallel since M9 until the end of the project (M42) to cover the 
technical aspects of the selection and delivery of XMANAI AI and Graph Machine Learning Models. As 
a first step, a landscape analysis is conducted over the application of AI methods in industry, focused 
on the use cases presented by the XMANAI demonstrators. Utilizing D6.1 “Demonstrators 
Requirements” and the technical requirements in D1.2 “XMANAI Concept Detailing, Initial 
Requirements, Usage Scenarios and Draft MVP” as points of origin to define the specifics of 
manufacturing problems to be addressed, D1.1 “State of the Art Review in XMANAI Research 
Domains” is further used as a roadmap to derive novel explainable AI solutions to these problems. 
This initial selection of baseline algorithms is primarily driven from the comprehension of the 
problems put forward by the 4 XMANAI demonstrators and justified by the explainability needs and 
the technical challenges that arise in each case.  

Although focused on the XMANAI demonstrators, the draft catalogue of explainable AI algorithms is 
anticipated to be reusable to address generic manufacturing problems, since the 4 demonstrators are 
considered representative of common AI applications in manufacturing. The draft catalogue will be 
implemented and made available on the XMANAI Explainable AI Platform, with the use of components 
defined in D5.1-“System Architecture, Bundles Placement Plan and APIs Design”, and the 
corresponding sub-components detailed in D3.1-“AI Bundles Methods and System Designs and D2.1-
“Asset Management Bundles Methods and System Designs”. The final product is expected to be 
aligned with the contents and definitions in D1.2-“XMANAI Concept Detailing, Initial Requirements, 
Usage Scenarios and Draft MVP”. 

The baseline algorithms selected in this first iteration of WP4 activities, will be subsequently leveraged 
to train, optimize and evaluate Hybrid and Graph ML models, fine-tuned to fit the specific needs of 
the XMANAI demonstrators, in terms of performance as well as interpretability. The demonstrator 
data used to this end, will be mapped to the XMANAI data model(s) presented in D3.1 “AI Bundles 
Methods and System Designs”, also processed and managed by methods and tools defined in D2.1 
“Asset Management Bundles Methods and System Designs”. Model validation and optimization will 
take place in three sequential rounds as the activities of T4.3-“Cross-Validation and Experts Evaluation 
of XMANAI AI models” progress, taking security and ethics into account in each step of the process, in 
the framework of T4.4-“Ethics and Security in XMANAI AI Models”. Building on D4.1-”Draft Catalogue 
of XMANAI AI and Graph Machine Learning Models”, tasks T4.1-T4.4 will jointly result in the 
intermediate and final selection of trained Hybrid and Graph ML models that the XMANAI Explainable 
AI Platform will deliver. These trained models will be documented accordingly in the following WP4 
deliverables D4.2, D4.3 and D4.4, due in months M21, M32 and M42 of the project respectively. 

1.3 Impact and Target Audiences 
Due to the technical content of this deliverable, the document is mainly addressed to the Data 
Scientists and Data engineers, while the Business user is not directly targeted at this point. This is a 
Draft version of the XMANAI catalogue of explainable AI models, where the foundations are set to 
ensure the theoretical and technical support of explainable solutions to the manufacturing use cases 
presented by the demonstrators. The impact of the proposed XAI solutions to all the targeted end 
users (Data Scientist, Data Engineer and Business User) will be assessed during the development of 
concrete solutions, as part of the experimental phase of the project. 
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1.4 Deliverable Methodology 
The contents of the present document are the product of collaborative work between business users, 
scientific and technical partners involved in WP4 activities. The methodology adopted in order to 
produce the deliverable was discussed and agreed by all involved parties, and can be summarized as 
follows: 

1. Landscape Analysis: The research conducted at this step is focused on the general 
application areas considered in the design of the XMANAI Manufacturing Apps Portfolio, 
including Production Optimization, Product Demand Forecasting, Process/Product Quality 
Optimization and Process optimization & Semi-Autonomous Planning. 
2. Demonstrator Use case analysis: Each industrial partner, representing each of the 4 
XMANAI demonstrators (namely FORD, WHIRLPOOL, CNH and UNIMETRIK), was assigned to 
at least one technical partner, responsible for providing the technical support in the design 
and implementation of each pilot. Teams then worked closely together, focusing on 
understanding the specifics of use cases addressed by the demonstrators, breaking down each 
use case in discrete sub-tasks. In parallel, each identified sub-task was related to the specific 
data sources that will be utilized to address it, as well as to the intended outputs. 
3. Mathematic description: A mathematical formulation of the problems and their 
potential solutions is achieved, as a result of the analysis conducted in the previous step.  
4. Algorithm selection: The selection of appropriate AI and Graph ML algorithms to 
address each task is made at this point. Amongst selected algorithms, those with an opaque 
functionality are equipped with explainability components, anticipated to provide meaningful 
and high-quality explanations. The methods presented here are depicted based on the 
insights provided from the review on explainability techniques documented in D1.1, as 
regards the construction of Hybrid models. In the case of Graph ML algorithms, the 
categorization of explainability methods is based on the taxonomy recently proposed by 
(Yuan, et al., 2021).  
5. Draft catalogue construction: We further proceeded by grouping algorithms together 
and examining their applicability on more than one task, while the final catalogue is presented 
by means of algorithm cards that summarize information on the selected baseline algorithms. 

1.5 Dependencies in XMANAI and Supporting Documents 
The ”Draft Catalogue of XMANAI AI and Graph Machine Learning Models” presented in D4.1, was 
constructed in direct consideration of  

• the requirements documented in D6.1-“Demonstrators Requirements”  

• the results of D1.1-“State of the Art Review in XMANAI Research Domains”, extending the 
findings presented therein as concerns AI applications in industry towards a more technical 
perspective.  

In addition, the draft catalogue is indirectly dependent to the contents and definitions presented in  

• D1.2-“XMANAI Concept Detailing, Initial Requirements, Usage Scenarios and Draft MVP”, 
regarding the expected characteristics and usage of the draft and final product, 

• D5.1-“System Architecture, Bundles Placement Plan and APIs Design”, in relation to the 
components of the XMANAI Explainable AI platform that will be used to develop and deliver 
the catalogue, 

• D3.1-“AI Bundles Methods and System Designs”, regarding the XMANAI sub-components 
responsible to manage the model’s lifecycle,  

• D2.1-“Asset Management Bundles Methods and System Designs”, in reference to methods 
and tools that will be applied to manage access to the catalogue and security issues. 
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1.6 Document Structure 
A landscape analysis of AI methods applied to extract insights from industrial data, is outlined in the 
following Section 2 of this document. Common AI usage scenarios in industrial settings are described, 
focusing on the technical perspective and outlining emerging challenges and limitations. Section 3 
provides detailed descriptions of the problems addressed by the XMANAI demonstrators, along with 
the data sources that will be available to solve them. Each use case is explored in depth, highlighting 
the needs for explainable solutions, also identifying technical challenges that are anticipated to arise. 
Security and ethics issues that may need to be addressed are also referred to here. Section 4 is 
dedicated to the selection of Hybrid and Graph ML algorithms to populate the draft catalogue of 
XMANAI models. The adopted methodology to collect the algorithms and summarize their use in the 
demonstrator manufacturing scenarios, leading to the construction of the draft catalogue, is detailed 
herein. Concluding arguments on the results and prospects regarding future work are presented in 
the final Section 5 of the deliverable. 

1.7 Ethics 
Ethical considerations were not encountered during the construction of the Draft catalogue of 
XMANAI baseline algorithms, since we are dealing here with mere mathematical objects that describe 
iterative algorithmic procedures, untrained models which are objective by default. AI models can only 
expose biases and stereotypes that are hidden in the training data, hence ethical concerns of this kind 
will be possible to be examined during the experimental evaluation of the selected algorithms trained 
on the data provided by the demonstrators. Moreover, the interference of XMANAI models with work 
ethics or the individuality of workers will be judged in relation to feedback provided by the business 
users, after the initial release and experimental use of XMANAI trained models and manufacturing 
applications. Consequently, ethical considerations and the fairness of XMANAI AI models will be 
addressed during the experimental phase of the project.  
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2 AI for Industrial Data Insights Generation 

2.1 Introduction 
This section focuses on the investigation of different manufacturing scenarios of the demonstrators, 

where a general analysis of the manufacturing landscape has been carried out in an attempt to 

describe the various possible scenarios of application. As a result, methods for 4 manufacturing 

scenarios have been analysed in depth. As it can be seen through the different subsections, the 

methods proposed so far in the state-of-the art consist of applying AI approaches leaving aside the 

explainability component. These manufacturing scenarios are: 

• Production Optimization 

• Product Demand Forecasting 

• Process / Product Quality Optimization  

• Process optimization & Semi-Autonomous Planning 

2.2 Production Optimization 
The enhancement of production planning and control, through Artificial Intelligence (AI) approaches, 
can lead to significant improvements in various manufacturing systems. The availability of data 
combined with the increased computing power have facilitated the advent of Machine Learning (ML) 
approaches as a powerful solution to cope with manufacturing challenges. Various implementations 
of ML solutions have been recently applied for production planning and control of manufacturing 
systems, producing robust and accurate results in different stages of the production lifecycle (Usuga 
Cavadid, et al., 2020). 

(Gahm, et al., 2022) proposed a Neural Network (NN) approach to solve a production problem in the 
metal-processing industry. Specifically, the production of small parts needed to be maximized under 
the minimization of the utilized materials. The proposed NN was able to predict new feature vectors 
to describe the instances of the produced parts, and therefore they achieved the lowest expected loss 
(RMSE of 341.7), thus improving the production planning.  

(Wang, et al., 2018) proposed a density peak-based radial basis function network (DP-RBFN) to rapidly 
predict the cycle time (CT) for production planning in the wafer manufacturing sector using a diverse 
and agglomerative CT dataset. The network method, which was based on a clustering technique, was 
capable of determining the density peak, while a parallel computing approach was proposed to speed 
up the training process with the large-scaled CT data. Finally, an experiment with respect to the 
semiconductor wafer fabrication system (SWFS) was presented, which demonstrated that the 
proposed methodology outperformed the radial basis function network, the back-propagation – 
network, and the multivariate regression method in terms of mean absolute deviation (MAD) and 
standard deviation (SD), as it accomplished a MAD and SD of 2.5 x 10-4 and 2.21 x 10-4, respectively.     

 (Lauer & Legner, 2019) presented a random forest (RF) ML approach for the prediction of plan 
instability in manufacturing master production planning. Their model, that was trained and tuned in 
an extended training dataset, provided an accuracy of 73%. From the results, it can be observed that 
the developed ML algorithm has been influenced by the relationship on-demand, hence extracting 
high accuracy in the second third of the planning horizon. To capture deviations from this pattern, 
further data and features are needed (e.g. capacity). The approach can be applied for decision-making, 
while the evaluation and results require further analysis. 

(Gonzalez Rodriguez, et al., 2020) proposed a novel ML methodology for a Closed-Loop Supply Chain 
(CLSC) management problem. Their approach is a decision-making system based on fuzzy logic that is 
built on ML. Specifically, the real case scenario of the paper was an Industrial Hospital Laundry (IHL), 
with 16,000 kg of daily production integrated into a CLSC, aiming to reuse dirty hospital clothing. 
Therefore, there was a need for the development of a decision support system for the management 
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of operations and the control of stocks at a tactical level. The approach was a combination of 
regression trees and fuzzy logic, defining a Fuzzy inference system (FIS). The performance and 
generalization of the regression trees were validated through a cross-validation mechanism giving an 
MSE of 43.12. After the learning of regression trees was finalized, a fuzzification step was applied to 
each one of the models. The FIS system gave an error of 5.48 ± 10 for externalization predictions and 
an error of 6.92 ± 9.04 after the fuzzification step for the new classification rate determination. 

(Morariu, et al., 2020) presented an ML approach for predictive production planning (operation 
scheduling, resource allocation) and predictive maintenance. They developed a hybrid control solution 
that utilizes Big Data techniques and ML algorithms in order to process information streams in large-
scale manufacturing. Specifically, a long short-term memory neural network (LSTM) was trained to 
determine possible anomalies or variations that are relative to the normal patterns of energy 
consumption. From the results obtained, the LSTM approach was able of predicting resource 
performances such as timeliness, energy consumption and precision. Large manufacturing systems 
with interchangeable resources could benefit from big data architectures, by extracting insights that 
can be adapted for triggering real-time decisions in production planning.  

One of the key parameters in production planning and control is the lead time that elapses between 
the release of an order and its completion, as it is determined based on the observed time orders to 
traverse the production system. While the traditional order release models assume static lead times, 
they should be set dynamically to reflect the dynamics of the system. (Schneckenreither, et al., 2020) 
proposed a flow time estimation process to set lead times dynamically by applying an artificial neural 
network (ANN). Moreover, they implemented a safety lead-time to incorporate the underlying cost 
ratio, between the finished inventory holding and the backorder costs in the order release model. 
They tested the proposed methodology by utilizing a three-stage make-to-order flow-shop simulation 
model and compared the forecast accuracy along with the cost performance to other forecast-based 
order release models. The proposed ANN approach yielded high-quality flow time estimates which 
can help decision-makers to adapt lead times dynamically.  

The data value has grown rapidly during the last years, and therefore gained a central role in modern 
societies. The development of sensors and new technologies to store and analyse the data are the 
new industrial revolution. These technologies are able, nowadays, to support smart manufacturing 
through the whole product lifecycle, provide new insights in each step, and also a better 
understanding of each step, from primary production to consumption. (Garre Perez, et al., 2020) 
presented an ML approach to support production planning of a food industry in the context of waste 
generation under uncertainty. Because food production is a complex process, uncertainty is very 
relevant and results in differences/anomalies between the planned production and the actual output. 
These anomalies lead to an economic cost for the company (e.g. waste disposal), as also in 
environmental impact (e.g. environmental carbon footprint). The proposed methodology consists of 
ML algorithms that were utilized to predict deviations in production, in order to reduce the 
uncertainties that were related to the amount of the waste produced in a food company that produces 
liquid products based on fruits and vegetables. The data have been gathered on 1,795 batches, 
including the characteristics of the product and the difference between input and output weights. The 
ML models that have been implemented, in the proposed approach, were: Linear model, Regression 
tree, Bagged tree, Random Forest, Gradient boosting, Lasso, Ridge regression, Elastic net and Spline. 
From the results it can be observed that the Gradient boosting algorithm outperforms the other 
models, by achieving an RMSE of 0.016, and a MAE of 0.012 for the test set, whereas it was finally 
verified that the proposed approach can be utilized as a tool for production anomaly detection.  

Although the application of ML approaches, in production planning and control, provides great results 
to collaborate with such predictions, users need to demonstrate a level of confidence in them. 
Explainable AI (XAI) is defined as a new research area in understanding, trusting and managing the AI 
part. (Rehse, et al., 2019) implemented a Deep Learning (DL) methodology in a DFKI-Smart-Lego-
Factory to predict processes, while they utilized State-of-the-Art XAI techniques to explain the 
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outcomes in managers and visitors. Specifically, their approach of DL for process prediction, which is 
an important part of managing the business process at runtime, was based on an LSTM Recurrent 
Neural Network (RNN) with two hidden layers, 100 epochs, batch size equal to 20, dropout probability 
equal to 0.2 to avoid overfitting, a learning rate of 1.00, and LSTM forget bias equal to 0.1. From the 
results, the trained network was able to predict the next events, as well as the associated resources 
when an incomplete process instance was confronted. Moreover, through this approach, the 
production can be planned and optimized in real-time, while more information on the process 
instance leads to higher accuracy. The authors utilized XAI techniques in order to assist factory 
managers and production workers in better understanding, justifying and adapting the predicted 
outcomes by the RNN. They used textual explanations to visualize local explanations for the process 
outcome predictions. The user interface system introduced the area under ROC curve in the validation 
set, while the decision-makers could choose the probability threshold and different evaluation metrics 
(e.g. accuracy, precision, recall, F-score). Also, variable importance was automatically calculated and 
presented along with the feature importance on the global level considering the non-linear 
relationships presence, a process that helped decision-makers to understand the feature contribution 
to the extracted prediction. They utilized local explanations for particular cases and, after identifying 
the instances, white-box techniques such as rule induction algorithms or logistic regression were 
applied. Finally, they calculated saliency maps for the applied DL approach and visualization 
approaches (t-SNE technique) in order to make models more interpretable.   

In Table 1 the aforementioned algorithms, their characteristics, and applications are presented.  

 

Table 1 ML approaches in production planning 

Task / Process Data Model Output Publication 

Small parts in metal 
processing industry 

Nesting instances 
data 

NN Predict new feature 
vectors to describe the 

instances of the 
produced parts 

(Gahm, et al., 
2022) 

Wafer manufacturing 
sector 

CT dataset DP-RBFN Predict the cycle time 
and determine the 

density peak 

(Wang, et al., 
2018) 

Semi-conductor 
manufacturer 

Historical data of 
Master Production 
Scheduling (MPS) 

process  

RF Plan instability prediction 

  

(Lauer & Legner, 
2019) 

Management 
operations decision 

support in supply 
chain 

 Remaining 
production, 

differences between 
input and output, 

available time, 
classification rate 

Regression 
Trees/Fuzzy logic 

Classification rate 

Externalization 

(Gonzalez 
Rodriguez, et al., 

2020) 

Operation scheduling 
– resource allocation 

in manufacturing 

Energy consumption 
and execution time 

LSTM 

  

Predict timeliness and 
energy consumption  

(Morariu, et al., 
2020) 

Flow-time estimation 
process 

Flow time data ANN Lead times dynamic 
prediction 

(Schneckenreithe
r, et al., 2020) 

Food industry Product 
characteristics data 

Gradient boosting Predict deviations in 
production 

(Garre Perez, et 
al., 2020) 

LEGO Production and 
sensors data 

LSTM / t-SNE Predict processes (Rehse, et al., 
2019) 
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Task / Process Data Model Output Publication 

XAI techniques for 
outcomes’ explainability 
in managers and visitors 

 

It becomes obvious that Industry 4.0 leads to the digitization of various processes and provides 
opportunities and challenges. AI and ML approaches can lead to time and cost reduction in the 
industry, while extracting accurate and robust outcomes. The production planning and control of 
processes in the industry activities are of high importance because they establish smooth production 
processes, and as a consequence, they lead to the maximization of the outcomes. Although the ML 
approaches can provide benefits in the industry, they still lack understandability, while they are 
typically treated as black-boxes. XAI, as a new research field, can provide important insights that 
enhance the interpretability and explainability of the ML applications, and redefine the black-boxes 
approaches as grey-boxes. XAI techniques make the collaboration between humans and machine 
intelligence more feasible, advance the human decision-making process and define an upper level of 
trust that is required for autonomous AI deployment. In production planning and control, XAI is able 
to help managers into better decision-making through ML approaches. 

 

2.3 Product demand forecasting  
Product demand forecasting is a critical part for the supply-chain efficiency, but the limited data and 
the characteristics of the supply chain, alongside with the unavailability of historical data prevent 
forecasters pursuing advanced modelling in this field. Even when sufficient demand historical data 
exists, it cannot be considered as valuable because the market situation may change rapidly. The 
demands are affected by various hidden factors that require huge amounts of data and sophisticated 
models.  

(Zhu, et al., 2021) presented a novel framework of supply-chain information and ML for demand 
forecasting in the pharmaceutical industry. Their approach was based on the following processing 
steps. First, they utilized cross-series training to resolve the “lack of data” issue and balance the trade-
off between the sample size and sample quality. Moreover, they included two key non-demand 
features in the demand forecasting framework: (i) downstream inventory levels and (ii) supply chain 
information, designing the way to effectively include these features. They identified that the recurrent 
neural network (RNN) extracts better results with the cross-series learning framework and provides 
potential explanation of its superior performance, by the use of domain knowledge and numerical 
analysis. Also, they utilized two unique datasets, where they validated the performance of the 
proposed framework and extracted important empirical evidence. Finally, the cross-series forecasting 
model framework, with the grouping schemes and the non-demand features was able to demonstrate 
the value of ML in demand forecasting. 

The product demand forecasting is also significant in the fashion industry field due to the complexity 
of operations, the huge product variety and the evolving retail trends. (Kharfan, et al., 2021) presented 
an ML technique for demand forecasting of newly launched seasonal products in a leading fashion 
retail company. The proposed methodology was applied to a data set obtained from a leader company 
of apparel and footwear in USA, in which two data types were collected from the company as sell-in 
(shipment) and sell-through (POS) data. Several features were included such as product, calendar, 
store, price and promotion, and sales units. Their proposed approach was a three-phase model, 
consisting of clustering, classification, and prediction. The main objective was to identify the look-alike 
group of products from the train set. After the identification of the product, their average sales were 
used as a proxy to forecast the sales with the validation and test sets. The clustering phase grouped 
all the styles in clusters based on similarities of features. Multiple tools were utilized in the clustering 
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task such as feature selection, data normalization, high dimensionality reduction (t-SNE algorithm), 
and k-means clustering. The classification phase created links between the styles. In this phase, 
classification trees, random forests, and Support Vector Machines (SVM) were utilized. Finally, in the 
prediction phase, the future sales for the brand-new styles were forecasted in the validation and test 
sets. The performance of the approach was estimated through Weighted Mean Absolute Percentage 
Error (WMAPE), and the forecast bias by using Weighted Mean Percentage Error (WMPE), while SVM 
achieved the best performance with an accuracy of 93%. 

In industrial enterprises active in wholesale and retail trade and especially in the modern competitive 
sector of air transportation, demand forecasting for new products is critical. (Smirnov & Sudakov, 
2021) proposed an ML approach for forecasting new products’ demand, by utilizing data from the 
Ozon online store. The input data consisted of features such as price, name, category, and text 
description of the product. To solve this regression problem, they implemented various ML algorithms 
such as XGBoost, LightGBM, and CatBoost. The best algorithm was the LightGBM that accomplished 
an RMSE of 4.00. Their proposed model can be useful for companies’ analysts, to optimize sales 
assortment planning and logistic optimization, as well as to increase the accuracy of other prediction 
systems.  

(Goncalves, et al., 2021) implemented a multi-variate approach for multistep demand forecasting in 
assembly industries, with empirical evidence from an automotive supply chain. Their approach was 
based on a classical SC topology that consisted of a single manufacturer that was linked with different 
suppliers and end-customers. The forecasted demands for the finished products were utilized to 
determine the component order sizes to suppliers, the supplied components were assembled by the 
manufacturer and after producing a set of finished products, end-customers were able to request 
fulfilment follows. The proposed forecasting framework is a two-stage framework for the 
manufacturer’s demand forecasting. First, a multivariate dataset of time series, for each component, 
was built by utilizing the indicators that were mentioned above. A sliding window was used to create 
a set of training instances that were defined by the pre-specified number of time-lags, related with 
each input feature. An unconditional forecasting step was formulated which used only the information 
that is available until the forecast origin. Only lags greater or equal than the forecast horizon were 
included as regressors. The authors applied a multivariate expansion of Auto-Regressive Integrated 
Moving Average (ARIMA) model, known as ARIMAX, which allowed the inclusion of exogenous inputs 
apart from the autoregressive and moving average parameters. They also utilized three popular 
supervised ML regression models: multilayer perceptron (MLP), support vector machine (SVR), and 
random forest (RF), able to cope with complex nonlinear mappings. The evaluation of the forecasting 
framework was implemented in the logistics department of Bosch Automotive Electronics Portugal 
(AE/P), in order to establish a strategy for manufacturers demand forecasting improvement. The MLP 
models outperformed the other benchmark models in terms of forecasting performance, by achieving 
an NMAE of 9.48% at the 95% significance level.  

Moreover, (Feizabadi, 2020) proposed a hybrid demand forecasting that combined ARIMAX and 
neural networks (NN) for predicting product demand for a steel manufacturer. The steel 
manufacturing company was operating in four different segments (retail, project, manufacturing and 
home appliances). For each one of the segments data was collected. The proposed methodology 
based on two established models; ARIMAX and two-layer feed-forward NNs with backpropagation 
learning were fed with both time series and explanatory factors. A correlation analysis was carried out 
for the task of identifying the impact of several factors to the company’s sales forecast. From the 
reported results, the proposed ML-based forecasting approach (ARIMAX and NN) was able to improve 
both operational and financial metrics. The developed model was able to capture the complex and 
non-linear relationship among many variables, by extracting a forecasting accuracy up to 99.2% 
depending on the month.  

In supply-chain it is crucial to control costs, in order to increase the customer’s satisfaction, manage 
inventory and therefore improve the product. (Nguyen, et al., 2021) proposed a demand forecasting 
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and anomaly detection framework, for fashion retailing supply-chain, which consists of AI algorithms 
such as LSTM neural network, autoencoder network and one-class support vector machine (OCSVM). 
In fashion retailing, the consumer demand is fluctuating and sensitive to fashion trends, weather and 
price, leading to sharp and immediate fluctuations that cannot be predicted by the POS data-based 
replenishment system thus generating significant profit loss. Their proposed approach aimed not only 
to predict the exact sales by stock-keeping unit and store, but also detect and anticipate exceptional 
sales in order to help the practitioners’ decision making. The performance of their proposed method 
has been verified on benchmarking and real fashion retail datasets. The obtained results have shown 
that the proposed methodology was able to perform with high accuracy in both kinds of data. 
Specifically, for the benchmarking dataset (C-MAPSS) the proposed framework achieved an RMSE of 
9.71 for the test data, while on the generated data that was used for anomaly detection achieved an 
accuracy of 98.36%, a precision of 98.45%, an F-score of 96.98% and a Recall of 99.55%. For the real 
fashion retail data, the proposed methodology achieved an accuracy of 98.45%, a precision of 98.45%, 
an F-score of 96.98% and a recall of 99.59%, while for the anomaly detection the LSTM-Autoencoder-
OCSVM methodology was able to extract attributes from the input, and classify accurately the 
anomalies, extracting insights that could help the company find out the main factors that led to 
higher/lower product demand.  

ML in the product demand field has been raised as a powerful tool for the industry, in terms of profit 
maximization and cost minimization. Although the AI approaches extract robust and accurate results, 
there is still a need for explainability. (Rozanec & Mladenic, 2021) presented a novel XAI architecture 
based on semantic technologies through a knowledge graph which could provide concepts that 
convey feature information at higher abstraction level regarding demand forecasting models in the 
automotive sector. Through their approach, the authors were able to link domain knowledge, 
forecasted values and forecast explanations in a knowledge graph. The proposed architecture novelty 
was based in the combination of semantic technologies and media events providing informed 
prediction explanations, as it could integrate predictions, gather insights/relevant features, 
incorporate domain knowledge and context to each prediction and provide a forecasting explanation 
to the end-user. The proposed methodology could support semantically enhanced explanations for 
demand forecasting models, as it provided demand forecast values, the associated uncertainty, high 
level description of features influencing the prediction, the related media events, context and means 
to improve the demand forecasting model. The high-level description of features provided 
information about the main factors that influence the forecast along with the ways to avoid exposing 
sensitive details and model bias.  

In Table 2 the aforementioned approaches are presented in terms of algorithms, their characteristics 
and the associated applications.  

Table 2 Production demand forecasting approaches. 

Industry Data Model Output Publication 

Pharmaceutical  Demand historical 
data 

RNN Demand forecasting (Zhu, et al., 2021) 

Fashion retail  Sell-in (shipment) 
and sell-through 

(POS) data 

SVM Demand forecasting (Kharfan, et al., 
2021) 

Online store  Ozon online store 
data (price, name, 
category, and text 
description of the 

product) 

LightGBM New products demand 
forecasting 

(Smirnov & 
Sudakov, 2021) 

Assembly  

(Automotive) 

Product data ARIMAX/MLP Multistep demand 
forecasting 

(Goncalves, et 
al., 2021) 
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Industry Data Model Output Publication 

Steel manufacturer Multivariate data 
from Retail, project 
manufacturing and 
home appliances 

ARIMAX/NN Demand forecasting (Feizabadi, 2020) 

Fashion retail Supply-
chain  

C-MAPSS and 
generated dataset 

LSTM-Autoencoder-
OCSVM 

Demand forecasting and 
anomaly detection 

(Nguyen, et al., 
2021) 

Automotive Automotive 
Materials, Media 

events, and demand 
data 

Graph model Information about main 
factors that influence the 

forecast, ways to avoid 
exposing sensitive 

details, and model bias. 

(Rozanec & 
Mladenic, 2021) 

 

Product demand forecasting is considered as a crucial part in the life cycle of almost all industries. 
Although the AI/ML approaches have recently levelled up the life cycle of the industries, XAI can 
further bring business value by establishing trust between a company and its clients. This is achieved 
by making the prediction outcomes of the product demands more understandable for non-experts 
thus upgrading the trust-levels in the production process.  

 

2.4 Process/product quality optimization 
 

Process quality optimization 

Within the generic application domain of industrial process quality optimization, we focus on the field 
of Maintenance scheduling and explore AI methods applied for this purpose. Maintenance activities 
are a significant factor affecting a company’s costs and availability of products. The digital 
transformation towards Industry 4.0 is highly connected to advances in physical systems Prognosis 
and Health Monitoring (PHM) via the integration of Condition Monitoring systems (CMS), made 
available with the use of numerous sensors along the production line. This enables the development 
of predictive and proactive strategies for maintenance scheduling, by exploiting the huge amounts of 
data produced by the monitoring process to model the health state of machine components and tools 
and act accordingly. The application of predictive maintenance strategy (PdM) allows to overcome 
limitations of earlier approaches, in particular: 

• Corrective (run-to-failure R2F): Maintenance actions take place when a failure occurs. This 
strategy results in extended use of tools and components, but product quality may be 
compromised as the performance of machine components/tools degrades. Unplanned 
machine downtime is increased which also affects the availability of products.  

• Preventive (scheduled): Maintenance actions take place in predefined time intervals, machine 
components and tools are replaced when half-life is reached or, according to statistical 
analysis of failures, regardless of their condition. As a result, maintenance costs are increased, 
and the potential useful operation time of components and tools is not fully exploited. 

• Predictive / proactive (PdM) or Condition-Based Maintenance (CBM): The quality of 
operations and assets is constantly monitored, the current state of the production line is 
diagnosed and used to predict its future state, so that abnormal states are detected in-time 
and the needed maintenance actions can be undertaken at a convenient moment. Diagnosis 
and prognosis therefore enable informed decision making to prevent future failures or 
mitigate their impact. 

• Prescriptive maintenance goes one step beyond, providing decision support systems based on 
the diagnostic and prognostic results of PdM, in order to achieve the best possible scheduling 
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of maintenance actions with the least effect on the overall business activities. As a result, the 
management of resources and inventory of spare parts is optimized, operational uptime and 
product availability is maximized, while safety risks are kept to a minimum.  
 

A holistic view of maintenance scheduling, based on the combined results from diagnostics and 
prognostics over the manufacturing system’s components integrated with information from other 
sectors such as logistics and inventory, allows for the development of a decision support system that 
recommends a balanced solution, between the optimization of maintenance schedule, the 
minimization of costs and the maximization of product availability (Bousdekis, et al., 2019). 

Given the large amount, diversity and velocity of data involved in the context of PdM, including 
telemetry and CMS data from various sensors such as thermometers, accelerometers, digital cameras, 
acoustic and vibration sensors (Pech, et al., 2021), machine component error/failure logs and tool 
replacement logs, AI solutions have been found to excel over physics-based (Physics-of-Failure PoF) 
and statistical approaches (Carvalho, et al., 2019). This is evidenced by the significant growth in 
publications proposing AI solutions to PdM in the last decade, including machine learning (ML), deep 
learning (DL), graphical and fuzzy logic approaches (Dalzochio, et al., 2020). More importantly, the 
benefits fostered by AI-based PdM solutions have been already justified in practice since 2018, as 
documented in PwC and Mainnovation Research report that involved a large number (268) of 
manufacturing companies from Belgium, Germany and the Netherlands (Haarman, et al., 2018).  

An overview of AI techniques proposed to implement PdM in industrial settings is provided in Table 
3. The list is not exhaustive, rather than indicative to the variety of AI methods and data sources that 
have been explored in this research and application area.  

 

The application of AI solutions to PdM however is not a simple task, as the development and 
implementation of such solutions is highly dependent on the availability of data, which is related to 
the previously established maintenance strategy:  

- Supervised methods require information on machine component failures and tool 
wearing in the modelling data, usually available when R2F was the previous strategy 
(historical data in machine maintenance cycles, i.e. between failures). If such knowledge 
is available, then labelled datasets can be created through data (temporal) interlinking. 
Regression methods can be applied to predict the remaining useful life (RUL) or the 
probability of failure, whereas classification methods enable to detect predefined healthy 
and non-healthy conditions for each tool/component in the production line. 

- Unsupervised Methods come into play when machinery and process historical 
information is available, but failure records do not exist. This is usually the case when the 
previously applied strategy was preventive/scheduled maintenance. Unsupervised 
methods can also be applied at the data pre-processing level for dimensionality reduction 
and feature extraction. Methods in this category include variations of PCA and clustering 
(Amruthnath & Gupta, 2018), as well as embeddings. Anomaly detection algorithms are 
applied both at the pre-processing level, to eliminate outliers in the data and at the 
pattern recognition level, to detect abnormal system states.  

Other data-related challenges arise from the poor quality of data (especially raw sensory data are very 
noisy and usually redundant), imbalance in the records between healthy (common) and unhealthy 
(sparse) conditions, heterogeneity of data formats, and the integration of Big Data management tools 
(Dalzochio, et al., 2020).  

In the absence of historical data, synthetic datasets can be constructed via physical modelling of 
machine degradation, using digital twin technologies and Deep transfer learning (Xu, et al., 2019). In 
addition, there are several open-source datasets for PdM such as the Turbofan engines dataset by 
NASA and the FEMTO bearing dataset. 
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Random Forest, Artificial Neural Networks and Support Vector Machines have been depicted by 
earlier reviews as the most commonly used models in PdM tasks (e.g. (Carvalho, et al., 2019)). The 
need for time-based solutions however, instead of just alert monitoring, has recently driven 
researchers’ interest towards Deep Learning sequence models such as Deep autoencoders, methods 
also able to handle unsupervised feature learning in time-series (e.g. (Ren, et al., 2018)). Deep 
Learning methods are currently widely explored for the development of PdM (Serradilla, et al., 2020), 
due to their ability to handle multidimensional data, identify latent features and uncover complex, 
non-linear underlying relations. Adding to that, the inclusion of Generative Adversarial Networks 
(GANs) in the model architecture allows for the generation of additional fault records, to surpass their 
lack in the data (Liu, et al., 2021). Updating and running DL models in real-time, however, requires 
high computational cost and may affect the system’s efficiency and latency. Taking such 
considerations into account, (Fang, et al., 2021) developed a computationally light yet robust CNN-
based solution to provide fast and accurate predictions. 

Effective modelling must consider several failure mechanisms at play, in order to define the proper 
failure criteria/states for each component (soft: close to failure, hard: failure). This in turn allows for 
the recognition of degradation trends and the identification of parameters (external, such as machine 
workload, and internal, such as CMS sensory data) related to failure (Liu, et al., 2021). The generation 
of reliable quantitative indicators to achieve assets (machines, tools) and processes health monitoring 
(“health factors”) is therefore of paramount importance for the development of accurate and robust 
diagnostic and predictive PdM models (Guo, et al., 2017). Domain knowledge facilitates this process, 
to achieve clever feature engineering and health factor identification based on physical knowledge 
(Zonta, et al., 2020). Further, domain expertise enables semantic knowledge representation so that 
ontology-based approaches can be developed (Cao, et al., 2020). Ontology-based approaches seem 
able to tackle the more realistic case of multi-state & multi-component optimization, instead of 
providing prognosis for a single machine, by taking interrelations and interdependencies among the 
operations of different components into account. An example is found in the work of (Ansari, et al., 
2020), where the authors leverage on a Maintenance-specific data model to construct Bayesian 
Networks, as directed acyclic graphs (DAGs) representing causal relations in the data. Including the 
time dimension, these networks evolve into Dynamic Bayesian Networks able to infer the future 
probability distributions of nodes in the network, under the assumption that relations represented by 
edges in the graph remain static.  

Apart from the data usage, architectural considerations of AI-based PdM systems are related to the 
adopted data storage system within the company (on-premises or cloud-based) and also the rate at 
which data is currently acquired, that is, whether data are collected at predefined intervals (batch 
data), or in a continuous manner (on-line or streaming data). An example driven by the work of 
(Nguyen & Medjaher, 2019) is provided in Figure 1 below. Diagnosis and prognosis of the system’s 
health is performed by LSTM network, and the results are further processed in relation to 
maintenance cost estimation and spare part availability by use of a heuristic algorithm, to support 
timely and informed decision making.  

 

 

Figure 1. The dynamic predictive maintenance framework proposed by (Nguyen 2019). In this case, the AI model is trained on 
historical data, and designed to operate on streaming (on-line) data to support decision making regarding maintenance 
actions. 
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Additional challenges are related to the PdM system’s scalability and latency. A possible solution is 
proposed by (Zhou & Tham, 2018), based on ensemble learning and edge computing. A base learner 
for health state classification is run at each component of the production line, then separate results 
are combined using a Graphic Ensemble, to assess the overall health state of the system. 

Table 3 Overview of AI methods for Predictive maintenance in industrial settings. In case more than one models are examined, 
the best-performing method is depicted in bold. 

Machine/Tool Data Model Output Publication 

Rotating Machinery 
(gears) 

Vibration Signals Deep Belief Network 
and CNN 

Feature extraction 
Fault Detection 

(Li, et al., 2019) (Li, et 
al., 2019) 

Gearbox Vibration signals Hidden Semi-Markov 
Model 

Fault Detection, RUL (Li, et al., 2018) 

AGV, robot, milling 
machine, turning 
machine (structural 
parts processing) 

Machinery external 
data (sensors) and 
internal data (SCADA) 

LSTM-GAN, CNN-
LSTM, WGAN, 
GAPCNN 

State & Fault 
prediction 

(Liu, et al., 2021) 

Turbofan Engines Multivariate sensor 
data (temperature, 
pressure, fan speed), 
operating conditions, 
fault modes 

LSTM State classification 
(based on probability 
of failure in a given 
time window) 

(Nguyen & Medjaher, 
2019) 

Wind turbines 
generator bearings 

Vibration signals RNN Health Index, RUL (Guo, et al., 2017) 

Motors  Vibration Signals CNN and Spatial 
Attention 
Mechanism, VGG16, 
MobileNet, LeNet-5, 
MLP, SVM  

Bearing Fault 
Detection 

(Fang, et al., 2021) 

Assembly Line 
Workstation 

Temperature, 
humidity, 
acceleration, 
gyroscope data 

DBSCAN 

RF 

Outlier Detection 

Fault Detection 
(classification) 

(Syafrudin, et al., 
2018) 

Turbofan Engines 

 

Aircraft Landing gear 

Aircraft Electrical 
System 

Multivariate sensor 
data 

Pressure, proximity, 
operating conditions 

Voltages, currents 

 

One-class SVM 

Logistic Regression, 
Linear SVC, SVM, 
Extra Trees, RF, 
AdaBoost, DT, Naïve 
Bayes, 

PCA, k-means 

ARIMA,  Regression, 
Echo State Network, 
MLP, RNN-NAR, RNN-
NARX 

Anomaly Detection 

Fault classification 

 

 

Health levels 
identification 

RUL 

(Adhikari, et al., 
2018) 

Industrial machines  Sensor data (voltage, 
rotation, pressure, 
vibration) 

Error logs, 
maintenance history 

RF, ANN, DT, Naïve 
Bayes, k-NN 

State/Fault 
classification 

(Cardoso & Ferreira, 
2021) 

Exhaust fan Vibration signal PCA  

T2 statistic, k-means, 
Fuzzy C-means, 
Hierarchical 
clustering, clustering 

Feature extraction 

Fault Detection 

(Amruthnath & 
Gupta, 2018) 
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Machine/Tool Data Model Output Publication 

based on Gaussian 
Mixture Model  

Turbofan engine  

 

Injection moulding 

Multivariate sensor 
data 

Graphical Ensemble 
Learning (Simple 
Average, Weighted 
Average, Negative 
correlation learning 
with weighted 
average) 

Base learners: DT, 
kNN, SVM, MLP 

State/Fault 
classification 

Product quality 
classification 

(Zhou & Tham, 2018) 

FEMTO Bearing 
dataset 

Vibration signals Autoencoder and 
DNN, DNN, SVM 

RUL (Ren, et al., 2018) 

Coilers parts (drums) 
for mill process in 
stainless steel 
production 

Process parameters 
(steel density, coiler 
temperature, engine 
pressure etc) 

Logistics parameters 
(eg steel plate id) 

Configuration 
parameters 

Discrete Bayes Filter Probability 
distribution for part 
degradation 

(Ruiz-Sarmiento, et 
al., 2020) 

 

It appears that non-linear and complex ML/DL models perform better on PdM tasks, as a result of this 
landscape analysis, although direct comparison is not possible unless a comparative study is 
performed under the same setting (as for example in (Adhikari, et al., 2018), (Ren, et al., 2018), 
(Cardoso & Ferreira, 2021)). The development of AI-based Decision Support systems for PdM in the 
XMANAI context will equip such black-box models with interpretable components to provide trustful 
and comprehensive solutions that can be embraced by the business users at all levels, by exploiting 
the findings of D1.1 on state-of-the-art explainability techniques, while taking into account the 
explainability requirements put forth by the business users. 

 

Product quality optimization 

Industrial products quality control is an important factor that affects a company’s reliability and 
competitiveness. This field of manufacturing operations has begun to profit from the application of AI 
solutions for quality assertion and defect detection, as well as for the optimization of product 
manufacturing process (process control). Since the usage of AI methods in the optimization of process 
parameters is explored in the previous section, here we focus on methods applied to quality 
inspection through product defect detection, in the manufacturing environment. 

Product defect detection usually involves classification, localization and segmentation of geometric 
or surface/density defects. The most common method to achieve this is visual inspection of digital 
imaging data, although other signals such as acoustic, ultrasounds or Eddy currents are also explored 
to extract meaningful information on the quality of the product. Defect detection based on machine 
visual inspection outperforms human inspection, due to the ability of machine vision technologies to 
detect flaws invisible to the naked eye and observe across the entire electromagnetic spectrum, as 
opposed to the limitation of the human eye to the visible part. With the use of digital image processing 
and Artificial Intelligence in the manufacturing domain, machine vision inspection can offer accurate 
product defect detection in real-time, in an automated manner. For example, defect detection in 
welded joints is studied by (Launay, et al., 2021). Defects in this case are trapped gas pores observed 
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in X-ray tomography, while their mechanical response is computed by numerical simulations based on 
physical laws. Classes of defects are identified according to morphological characteristics and 
mechanical response by k-medoids, then a MLP relates a defect’s morphological representation with 
its mechanical response. 

Computer vision has been used from manufacturing industries to assert product quality, but the 
selection of which features to inspect was done manually. Feature extraction also has to be done 
manually in case traditional ML algorithms are applied. In a dynamic manufacturing environment, 
manually designed features may have to be redesigned, for the inspection system to work well on 
different products. Deep Learning methods overcome this obstacle, being capable of learning 
important features from images, both in supervised and unsupervised settings, hence they prevail in 
recent literature focused on surface defect detection (Chen, et al., 2021).  

Limitations of typical deep CNN for automated surface inspection include the difficulty of CNN to 
detect defects in non-flat and geometrically complex products, also the computational cost. (Wang, 
et al., 2020) propose a Faster R-CNN model running on embedded hardware in cloud-edge computing 
to overcome both issues. Faster R-CNN is built with the inclusion of a region proposal network that 
increases the speed in the detection of regions of interest, while exhibiting a balanced performance 
between the detection and classification of defects when compared to Single Shot MultiBox Detector 
(SSD) with Inception v3 or SSD with Mobilenet. In a different approach that aims to increase CNN 
classification accuracy in small-defect areas and produce a reusable model to detect defects in 
different automotive parts, (Qu, et al., 2018) integrated traditional image feature processing concepts 
for density slicing, region segmentation and area filtration into a deep CNN architecture. The proposed 
method exhibits high adaptability without the need for retraining.  

Deep Learning models need a large amount of training data, while the validation and testing data 
should be drawn from the same/similar distributions. In real production environments however, this 
is not always possible due to the emergence of new products with different characteristics, also the 
fact that company records on old products may not be kept after a while or may not be accessible. To 
avoid retraining from scratch any time new products are manufactured and to overcome the limited 
availability of new data, continuous or life-long learning DNNs are built by transferring the knowledge 
from previously trained models on similar tasks by cloning their weights, while fine-tuning on the 
particular task is achieved with only a small amount of new training data (Tercan, et al., 2022). The 
difference from transfer learning is that continual learning methods avoid the catastrophic forgetting 
of the trained network when faced with a new task. (Benbarrad, et al., 2021) present a comparative 
study on transfer learning from trained Deep CNNs for image classification, namely VGG16, Inception 
v3 and EfficientNetB0. The models are fine-tuned on the cloud, because despite pre-training this is a 
computationally intensive task for such deep network architectures, while image classification of the 
current product is performed on the edge. Taking into account both classification accuracy as well as 
time constraints, Inception v3 is depicted as the method of choice. The authors also investigate the 
effect of process parameters on the quality of the final product, by means of regression techniques, 
where Decision Trees are found to outperform k-NN, Lasso and Linear Regression. Another solution 
that is aimed to perform well on variant product defect inspection without expensive re-training is 
proposed by (Luan, et al., 2020), combining the traditional Similarity Structure Index (SSIM) with 
Siamese Networks. The model learns from pairwise structural similarity differences and is found to 
perform well on cross-category defect detection, on unseen data.  

Regarding DL methods for unsupervised defect detection that have been currently explored, Auto-
Encoders (AE) and Generative Adversarial Networks (GANs) are those that appear more frequently. 
For example, (Mei, et al., 2018) propose a multi-scale Convolutional Denoising AE to detect and 
localise unseen defects at different scales while being trained only on defect-free images. The method 
is found to be both accurate and robust to noise by experimental results on diverse data coming from 
fabric textiles, LCD panels and other materials. (Liu, et al., 2019) leverage on the ability of GANs in 
extracting latent informative features and learning the distributions in the training data, to generate 



 XMANAI - Explainable Manufacturing Artificial Intelligence  

D4.1: Draft Catalogue of XMANAI AI and Graph Machine Learning Models 17 

more data based on the estimated distributions. Their proposed GAN is trained on faultless steel plate 
images and the extracted features are used to train a One-Class SVM, which is then able to accurately 
classify faulty plates, based on the same feature vector, in contrast to the quality ones.  

In Table 4 the aforementioned approaches are presented in terms of algorithms, their characteristics 
and the associated applications.  

Table 4 AI methods for product quality assurance and defect detection. In case more than one models are examined, the best-
performing method is depicted in bold. 

Product Data Model Output Publication 

Welded joints X-ray tomography k-mediods 

MLP 

Defect type identification 

Defect classification 

(Launay, et al., 
2021) 

Turbo blades 
(automotive turbo 
engine components) 

Digital Image  Faster R-CNN,  

SSD +inception v3, 

SSD + Mobilenet 

Defect detection and 
classification 

(Wang, et al., 
2020) 

Automotive engine 
parts 

Digital image Traditional image 
processing with Deep 
CNN, SDK software, 
VGG (pixelwise and 
patchwise) 

Defect detection and 
classification 

(Qu, et al., 2018) 

Plastic bricks 
(injection moulding) 

3D CAD objects Continual learning 
DNN 

Defect detection (Tercan, et al., 
2022) 

Casting products 

 

Iron (mining flotation 
process) 

Digital Image 

 

Flotation process 
data 

Transfer learning 
Inception v3, VGG16, 
EfficientnetB0 

Decision Tree, k-NN, 
linear & lasso 
regression 

Defect detection 

 

Predict impurities in ore 
concentrate 

(Benbarrad, et 
al., 2021) 

Manufactured 
products of different 
categories  

Digital Image SSIM + Siamese 
Networks  

Defect detection and 
classification 

(Luan, et al., 
2020) 

Textile surfaces 

(Fabric, LCD panel, 
various materials) 

Digital Image Multi-scale 
Convolutional 
Denoising 
AutoEncoder 

Defect detection and 
localization 

(Mei, et al., 2018) 

Steel plates Digital Image GAN  

One-class SVM 

Feature extraction 

Quality classification (g/b) 

(Liu, et al., 2019) 

 

2.5 Process optimization & Semi-Autonomous Planning 
Another critical part in the life cycle of production is the task of process parameters’ optimization. The 

optimization of process parameters provides advantages in the hands of companies and facilities, by 

extracting the best set of parameters for each individual process, extracting insights and outcomes 

that are vital in terms of cost/profit level and the quality of each production line. AI and ML-driven 

optimization approaches are more and more implemented into various industry fields, offering 

accurate and less time-consuming results, compared to manually optimization procedures. Process 

parameters can be optimized by hybrid tools for objective function enhancement.  

(Deshwal, et al., 2020) deployed hybrid optimization techniques for the process parameters’ 

optimization of tensile strength in additive manufacturing. Their proposed approach combined three 
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optimization techniques (GA-ANN, GA-RSM, GA-ANFIS) and the best method, GA-ANN, accomplished 

an accuracy of 99.8%. The proposed technique facilitated the producing units to choose the optimized 

factor value in the input factors for Fused Deposition Modelling (FDM) parts fabrication with improved 

mechanical properties. The proposed hybrid models could be utilized for accurate prediction and 

optimization of other process parameters in similar industrial application problems. 

(Rouniyar & Shandilya, 2020) presented an optimization approach for process parameters in the 

magnetic field assisted powder mixed electrical discharge machining (MFAPM-EDM), which is a variant 

EDM process, with ultimate objective to improve the surface quality, the machining rate and the 

stability of the process. They used Aluminium 6061 alloy due to its growing use in aviation, 

automotive, and naval industries. The process parameters in their study were the discharge current, 

spark duration, pause duration, concentration of powder and magnetic field, which were considered 

to analyse the effect on material erosion rate and electrode wear rate. Teacher-learning-based 

optimization (TLBO) was implemented for the optimal process parameters determination and 

maximum material erosion rate (MER) and electrode wear rate (EWR) achievement. Through the TLBO 

implementation and comparing the proposed optimization method with other optimization methods 

such as genetic algorithm (GA) and desirability function of RSM, it was observed that the TLBO 

approach provided minimum EWR (0.1021 mm3/min) and maximum MER (30.4687 mm3/min). 

Apart from the task of process quality improvement, there are various procedures that can be also 

optimized in machining processes. End-users are also interested in the minimization of energy 

consumption during a process (e.g. cutting process). (Zhang, et al., 2017) proposed an optimization 

approach through a multi-objective optimization and Quantum genetic algorithm in order to reduce 

the energy consumption of a numerical control (NC) machine tool. The optimization model was 

applied to minimize the cutting specific energy consumption and the processing time, through the 

process parameters under actual constraint conditions in the manufacturing process.  Through their 

methodology, they achieved a decreased processing energy consumption of the process parameters 

by 27.21%, while the CSEC was reduced to 32.07% and the processing time was reduced by 34.11%. 

(Pfrommer, et al., 2018) presented a deep neural network (DNN) as a surrogate model for the 

optimization of process parameters in a composite textile draping process. Numerical experiments 

were linked with a Finite Element (FE) simulation model, and the surrogate-based optimization DL 

model was trained to predict the shear angle for more than 24,000 textile elements. The proposed 

methodology reduced the number of the expensive to evaluate, resource-intensive FE simulations 

required to find the optimized parameter configurations, while it managed to improve the best-known 

overall solution.   

(Madhavi, et al., 2017) proposed a Taguchi-Principal Component Analysis (Taguchi-PCA) approach for 

the evaluation of the optimum turning process in a machining industry to achieve good surface finish 

and high hardness. The main objective of their study was to solve the multi-response parameter 

optimization problem of the turning process, though solving the correlated multiple criteria 

optimization problem and considering as performance characteristics the hardness and surface 

roughness. The input parameters were the cutting-speed, the feed, and the depth of the cut. Although 

the traditional Taguchi-based hybrid optimization methods rely on the assumption that quality indices 

are uncorrelated or independent, to overcome the Taguchi limitations the authors implemented a 

PCA application for converting the correlated responses into uncorrelated quality indices, which are 

called individual principal components. The PCA component was optimized through the Taguchi 

method, while an Analysis of variance (ANOVA) was applied in the PCA component to find the 

parameters. Tests were conducted for three different materials and the results showed that the 
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proposed Taguchi-PCA technique could be efficient for solving multi-attribute decision-making 

problems, such as multi-objective product process optimization for continuous quality improvement.  

(Hooda, et al., 2021)  presented a random forest (RF) approach for predicting the optimum deposition 

angle, for any geometry, in Fused Deposition Modelling (FDM). FDM’s optimum value of deposition 

angle varies with the product geometry, and therefore accurate predictions are of high importance. 

The training dataset in the proposed method was generated by utilizing different shapes and 

geometries, and the generated correlation-based feature selection method was applied to extract 

crucial product features. K-fold cross-validation was used for the effectiveness of the RF model, while 

the empirical evaluation achieved a prediction accuracy of 94.57%. The proposed methodology 

provided very accurate and robust results and could further enhance the applicability of digital 

manufactured products. 

The ability of monitoring manufacturing processes is an important task in today’s production 

processes, as it increases user’s adaption and diffusion over technologies while users and human 

experts need to be provided with explanations and insights form the modules. Moreover, the 

unavailability of labelled historical data makes the use of ML models unfeasible. (Brito, et al., 2022) 

proposed an explainable artificial intelligence (XAI) approach for fault detection and diagnosis in 

rotating machinery. The proposed methodology consisted of three parts which were the following: 

feature selection, fault detection and fault diagnosis. Specifically, vibration features of the rotating 

machine were extracted in both time and frequency domains, unsupervised fault detection was 

verified through anomaly detection algorithms and fault diagnosis was achieved through Shapley 

Addictive explanations (SHAP) technique that interprets black-box models. In the feature extraction 

step, the vibrations features were extracted with respect to the type of monitored component and 

were then divided into training and testing groups, while the hyperparameters of the anomaly 

detection models were tuned. In the fault detection part, different anomaly detection algorithms were 

implemented, namely: clustering based local outlier factor (CBLOF), local outlier factor (LOF), isolation 

forest (IF), lightweight detector of anomalies (LDOA), histogram-based outlier detection (HBOD), k-

nearest neighbours (kNN), fast-angle-based outlier detector (FastABOD), outlier detection with 

minimum covariance determinant (MCD), one-class support vector machine (OCSVM), featuring 

bagging (FB) and a combination of all models. In the proposed fault diagnosis step, the most relevant 

features were analysed through models’ explainability, and the feature importance ranking was 

obtained through SHAP. The results were presented using the F1-score, PR-AUC (Precision-Recall Area 

Under the Curve) and the average confusion matrix of the iterations. In the anomaly detection task, 

the following performances were achieved: F1-score of 99.45% in Case 1; models: MCD, HBOS, and IF, 

99.84% in Case 2; models: MCD, kNN and IF, and 99.22% for Case 3; models: HBOS, IF, and MCD. For 

the classification part in Case 1 a maximum accuracy of 99.57% was achieved though IF, and in Case 2 

an accuracy of 96.72% was obtained by kNN and CBLOF. It was concluded that the proposed 

methodology could be effective and could be also utilized in many different industrial applications.  

In Table 5 the aforementioned approaches for the optimization of the process parameters in terms of 

models, characteristics, and applications are presented.  

 

Table 5 Optimization of process parameters approaches. 

Industry Data Model Output Publication 

Manufacturing Materials  GA-ANN Optimization of tensile 
strength process 

(Deshwal, et al., 
2020) 
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Industry Data Model Output Publication 

parameters in additive 
manufacturing 

Manufacturing Aluminium 6061 
alloy  

TLBO Process parameters 
optimization to improve 
the surface quality, the 
machining rate and the 
stability of the process 

(Rouniyar & 
Shandilya, 2020) 

Machining Experimental 
machining data 

Quantum GA Minimization of the 
energy consumption of a 

numerical control (NC) 
machine tool 

(Zhang, et al., 
2017) 

Manufacturing Textile elements and 
draping process 

parameters 

DNN Optimization of process 
parameters in a 

composite textile draping 
process 

(Pfrommer, et 
al., 2018) 

Manufacturing Turning process 
parameters 

Taguchi-PCA Evaluation of optimum 
turning process 

parameters to achieve 
good surface finish and 

high hardness 

(Madhavi, et al., 
2017) 

Manufacturing Cube, sphere, 
pyramid, rectangle, 
cone shaped, and 

wheel specimen data 

RF Optimum deposition 
angle prediction 

(Hooda, et al., 
2021) 

Manufacturing Rotating machinery 
data 

Anomaly detection 
algorithms / SHAP 

Fault detection and 
diagnosis 

(Brito, et al., 
2022) 

 

Explainable AI (XAI) becomes an important part in AI research area since it leads to trustworthy, 
compliant, effective, and more robust systems which can increase the adoption level and the business 
value. Understanding which parameters each model uses in order to achieve better performance, is 
essential in the manufacturing processes. Through XAI it is feasible to perceive the effect of each 
parameter in a process, and this can lead to more persuaded optimization actions and approaches. 
XAI converts the confusion of AI systems into a more accessible environment, for non-experts, by 
enhancing stakeholders’ trust through interpretability. 
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3 AI for the needs of XMANAI Demonstrators 
 

3.1 Introduction  
As a preliminary task to the elaboration of the Baseline Models Catalogue, the identification of the 

different manufacturing scenarios to be addressed in the execution of the demonstrators is 

mandatory in order to select the algorithms and the types of explainability that better suit their needs. 

Thus, this section aims to provide an overview of the different demonstrators as well as an 

identification of the problems to be solved and the available data sources. In addition, the 

explainability needs in each scenario have been taken into account in order to select not only the main 

model to address the particular problem, but also the explainability tool that best fits these needs. 

During this process, the different technical challenges, security issues and ethics that may arise in each 

demonstrator have been considered. 

3.2 FORD - AI for production optimization 
The current situation at Ford Engine Plant does not allow the power of quasi-real-time data to be 
harnessed for decision making. There are records on the status of the different operations on the 
production line, the quantity of engines produced and their parts, quality reports and production 
plans. Despite having this information, there is not a centralized database and all the information is 
disaggregated in different corporate databases. This lack of centralized information is the first 
problem that needs to be solved in order to optimize the different processes that occur on the 
production line. This problem implies another one, which is the lack of artificial intelligence applied to 
the different decision-making processes due to the impossibility of taking advantage of all the 
available data. The proposed application aims to mitigate these problems by means of a set of 
functionalities that will be explained in the following sections. 

 

3.2.1 Holistic overview of the production with representation of the production 
line, unwanted scenarios alert system and workload simulations  

The first use case consists of a set of actions related to the current status of the line within a shift. By 
means of the information provided by the different disaggregated data sources it is possible to analyse 
this information jointly to establish trends and to make predictions about anomalous situations in the 
line or the total amount of produced engines at the end of the shift. Thus, the first use case to be 
worked in the Ford demonstrator is divided in the following problems: representation of the historical 
status of the production line and estimation of the production at the end of the shift, detection of 
unwanted scenarios and simulations of new hypothetical situations. 

 

3.2.1.1 Problems to solve 

As mentioned above, the first problem is related to the production overview and line representation. 
Ford's databases have different information about the status of operations (whether an operation is 
cycling a new component, waiting for a new part, blocked or in another possible state), operation 
failures, cycle times (both actual and design time), number of parts produced in a shift and data related 
to the quality of the parts produced. In this use case different actions will be carried out. First, different 
data sources related to production data will be joined to represent the historical status of the 
production line and to make predictions about the number of engines produced at the end of the shift 
following the current trend of the line. Both information will help the business experts to understand 
the significant deviations that may occur between the predicted (planned) production and the actual 
engines produced at the end of the shift.  
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The second problem addressed in this use case is the development of a warning system for undesired 
situations, thanks to the information provided by the first problem. Thus, in addition to the 
information and predictions provided from the overview of the production line, this second 
application will provide an alert system of anomalous situations that will occur in case the production 
line behaves according to a certain trend without actions being taken to reverse this situation.  

Also taking advantage of the information provided by the previous problems, a third one is included 
in this use case that focuses on the simulation of different scenarios (changes at some point of the 
production line) to analyze the impact of these changes on the estimated production at the end of the 
shift. 

 

3.2.1.2 Specific Data Sources 

In order to develop this use case, two corporate databases are going to be used: FIS and QLS-CM as 
also mentioned in the XMANAI Deliverable D1.2. 

FIS is a computer-based data collection and reporting system that monitors Machine Performance 
Data, such as uptime, downtime, blocked and starved conditions, other machine states, machine 
faults and warnings, and other line conditions. The information is stored in a SQL database. Concretely, 
from FIS the following data will be taken into account: 

• Machine status. The current status of each operation of the line. There are a total number of 
13 states, including cycling a component or blocked by other operations, among others. 

• Machine faults and warnings. It provides the information related to faults and warnings for 
each operation, both the number of occurrences and the duration of each one. 

• Produced components. The number of components per each operation. 

• Cycle Times. Design and real cycle times are available for each operation of the production 
line. 

QLS-CM is a database used as a quality and traceability system that is used to collect birth history data 
for serialized assemblies and components. It is a database that can be queried to look up the birth 
history of a component or assembly to determine its manufacturing status, machining or assembly 
path, test status and quality status.  The information is also stored in a SQL database. QLS-CM will 
provide information on: 

• Traceability. Through the serial number of each component, it is possible to place each 
component in the production line and combine this information with the quality parts and the 
overview of the whole line. 

• Data quality parts. Information related to the quality of the assembled components at each 
point of the line, such as First Time Through (FTT). 

Table 6  Inputs / outputs in the 1st use case of the FORD’s demonstrator. 

Inputs Outputs 

Machine Status 
Machine Faults and Warnings 

Produced Components 
Cycle Times 
Traceability 

Data Quality Parts 

Prediction of produced engines at 

the end of the shift 

Detection of unwanted situations 

Simulation of different scenarios 
based on the prediction of 

produced engines 
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3.2.2 Automated production planning 

The second use case focuses its activities on the optimization of different parts of production planning 
performed by business experts. These production planning problems are divided into different 
categories, depending on the time window considered. Within a shift, it is important to divide the 
expected production for a day into batches and, within a batch, the sequencing of the different 
engines to be produced, attending to a set of constraints established by the business experts. At a 
higher level, there is a production planning that consists of distributing the engines demanded for a 
month over the available days of the month, taking into account the manual constraints. Thus, this 
use case is divided into three problems: the generation of automatic constraints, the sequencing and 
planning within a shift, and the elaboration of a month's production planning. 

 

3.2.2.1 Problems to solve 

As mentioned, the automated production planning part aims to solve different problems related to 
the current way of planning production, which may not be optimal due to the lack of capacity to 
process and take into account the information about the historical status of the production line, as 
well as the demand of engines in the different work shifts. Thus, the first problem of this use case will 
focus on the generation of constraints for production planning based on the current state of the 
production line. The second problem will focus on the development of a system for sequencing and 
planning the production of the different engines during a shift, replacing the current tool with one 
that takes into account both the demand and the previously generated constraints. Finally, the last 
problem will focus on the development of a planning model that proposes an automated daily 
planning for a whole month in addition to those proposed by the business experts, taking advantage 
of all available data sources. 

 

3.2.2.2 Specific Data Sources 

In this use case, in addition to the use of the information provided by the first use case, which 
leverages on the information provided by FIS and QLS-CM, another database will be used. The 
Datamart database is a mainframe computer system used to support Ford's assembly and 
manufacturing plants worldwide. It is used to support the following operations: shipping, receiving, 
inventory, scheduling, release, bar coding, warehousing and accounting. This system is also used to 
support electronic communication between Ford, its suppliers and customers. This system is used to 
view demand, production plan, available parts and components for different engines in order to plan 
the best production mix. Specifically, Datamart is used in this use case to analyse the following data 
sources: 

• Availability parts. These parts provide information on the availability of the different 
components required to assemble an engine. 

• Monthly expected production. Consists of the total number of engines of each derivative to 
be produced in a month. 

 

Table 7  Inputs / outputs in the 2nd use case of the FORD’s demonstrator. 

Inputs          Outputs 
Machine Status 

Machine Faults and Warnings 
Produced Components 

Cycle Times 

Generation of constraints 

Sequencing and planning of the 

different engines during a shift 
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Traceability 
Data Quality Parts 
Availability Parts 

Monthly Expected Production 

Automated Monthly Planning 

 

3.2.3 Explainability needs  

The explanations needed by the demonstrator will be provided in different ways. Regarding the first 
use case, different predictions will be made based on different data sources describing the temporal 
evolution of different parameters of the production line. Thus, the results of the system depend on a 
set of input characteristics. In order to know which of these features influence the outcome, different 
explainability tools will be taken into account, aiming to show the relevance of the input features in 
order to know which are the root causes that produces a result. The second use case focuses on the 
elaboration of different types of automated production schedules. In this case, business experts need 
to know why one plan is better than another or why a specific action is performed at a certain point 
in the plan rather than another. Therefore, explainability will be brought to this second use case 
through the employment of contrastive explanations, which aim to explain the plan by comparing 
different plans and establishing which one is better based on a set of reward metrics. 

 

 

Figure 2 Explainability needs from FORD Demonstrator. 

 

3.2.4 Technical challenges, security aspects and ethics  

At the beginning, one of the main challenges to be faced is the preparation of the data. As mentioned 
above, different data sources will be used during the development of the demonstrator. 
Consequently, it is mandatory to find a way to combine all available information in order to extract 
relevant features from the data that can be used as input to the predictive systems. The second 
technical challenge is related to the elaboration of explanations. Although the draft catalogue of 
baseline models ensures that any model can be interpretable, these interpretations may be 
incomprehensible to the business user, as these explanations are provided to data scientists in a first 
format. Therefore, the translation of these explanations to business users is a key challenge that needs 
to be addressed during project implementation. In terms of security and ethics, GDPR policies will be 
complied with, as well as any other confidentiality needs. 

3.3 WHIRLPOOL – AI for product demand planning 
Whirlpool started implementing AI solutions several years ago, mainly in the manufacturing 
operations, through research and development projects. The main focus of the launched AI projects 
were around the manufacturing domain on predictive demand forecasting for white goods spare parts 
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and on finished product demand forecasting. In 2020, though, the D2C “Open Community” was 
launched with the aim to deliver products within 2-5 working days, depending on the geographical 
area. The full activation of the D2C channel aims to effectively forecast D2C demand but also acquires 
a deep knowledge of the business dynamics, while protecting confidential data. 

  

3.3.1 Demand forecasting reliability 

Currently, the D2C channel uses the same algorithms as in B2B forecasting, but the goal is eventually 
to forecast the two channels separately and aggregate the results later on. Now statistical forecasts 
are generated every month for 18 months rolling based on the historical data for the specific 
organization, product lifecycle data, on-hand portfolio and other inputs. Added to that, every week, 
on Monday, there’s an additional weekly review process driven by the central demand planning 
department, which focuses on exceptions and urgency management to support planning. The overall 
demand forecasting process is embedded into a SAP IBP system, which supports the generation of the 
Operational Demand Plan (ODP). The central planner is limited to the high-level validation of the 
forecast profile and to the manual data transfer and enrichment upload into the IBP system. All the 
information on customers’ requests, choices, preferences and attitudes are only manually captured 
into the demand planning process during the sales enrichment phase and only for those markets 
which have already activated this new business channel. The forecasting capability of a reliable 
demand profile is currently very low and therefore there is instability in the supply flow and 
overproduction or stock breakages. 

  

3.3.1.1 Problems to solve 

Taking into consideration the Whirlpool demonstrator description as elaborated in the XMANAI 
Deliverable D6.1, a set of problems that are relevant to demand forecasting arises. The first problem 
is about forecasting reliability and how to improve it. The D2C demand profile per SKU/day should be 
generated in a time horizon of 3 months; aligned both with the weekly and monthly DFE targets 
(Demand Forecast Effectiveness). The second problem is regarding the reduction of stock in the 
inventory for D2C. By implementing a good demand forecasting system, the accuracy of the 
predictions will ensure minimization of the reserved stock, which will reduce the fixed capital and the 
obsolescence risk. The third problem is about maximizing the product availability on request, which 
is a key business objective of the Whirlpool supply chain. This will also be achieved with good demand 
predictability and it represents a crucial factor for production plan actualization in the whole supply 
chain. 

Moving on, as a fourth problem, the XMANAI platform has to help the supply chain of Whirlpool and 
the D2C sales organization understand the most important influencing factors for demand profile 
and their correlations. This will ensure a higher control over the customer experience and will improve 
the supply process coordination. The customers' behaviours need to be understood (as the fifth 
problem to be solved); by helping the D2C marketing and sales organization classify customers 
behaviours and therefore optimize the web services and customer frontend.  The sixth problem is 
about the understanding of buying patterns, which is another important business objective. By 
helping the D2C marketing and sales organization identify the buying patterns, this will support 
decisions on the offered product range, sales initiatives, development of new products and also 
website optimization. 

  

3.3.1.2 Specific Data Sources 

In order to realize this use case, historical sales transactional data from the web platform will be used 
to train the AI forecasting algorithms. These data are currently stored on the Google Cloud Platform 
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and can be accessed either through direct download or using a REST-API Endpoint. They contain 
standard SAP sales orders that are generated when a product is purchased from the e-commerce 
platform and are extracted on a daily basis. The AI algorithms trained using these data will be applied 
to generate the forecasted sales per day and SKU. The demand profile will then be visible to the central 
planner within the XMANAI platform, which will then be downloaded and injected manually to the IBP 
Whirlpool process and then merged with the traditional B2B demand. The demand profile will also be 
used for D2C inventory management. 

Along with the historical sales transactional data, additional google analytics data will be leveraged in 
order to understand the business dynamics. Google analytics data are also stored in Google Cloud 
Platform and can be downloaded either directly or through a REST-API endpoint. They contain 
clickstream data generated by Google Analytics tags embedded in the e-commerce platforms, such as 
visitor ID, session ID, visit start time, traffic source, device etc. 

  

Table 8: Inputs / outputs in the use case of the Whirlpool’s demonstrator. 

Inputs          Outputs 

Historical SAP Sales Orders  

 

Clickstream data generated by 

Google Analytics tags 

 

Customer and product data 

D2C Demand Profile per SKU 

D2C Demand Profile per day 

Seasonal Demand Profile 

Classification of customer’s 
behaviours  

Identification of buying patterns 

 

 

3.3.2 Explainability needs 

Different explainability needs emerge regarding demand forecasting and business dynamics 
understanding. The capability of effectively forecasting the demand for D2C and also of understanding 
the business dynamics are crucial for the success in this challenging market sector. So far in Whirlpool, 
the trust in an AI system was ensured by its capability to produce accurate results. This approach does 
not effectively incorporate human expertise or explain the forecasting results to humans in the 
process, which is crucial in certain scenarios such as if the AI system is off-line or in case of major 
process changes.  Therefore, explainability tools can be incorporated to showcase the features (from 
the historical input data) which had the highest impact on the AI forecasting models decisions and, 
also, how much these features forced the decision in the specific direction. Similar explainability 
methods can be applied in order to provide feature correlations regarding the forecasted demand 
profiles, leading to better understanding of the key factors affecting demand evolution. Added to that, 
customers’ behaviours can be classified into groups of similar characteristics, having statistical 
descriptions of each group. This will aid in the understanding of customer behaviours, by having 
characteristics that describe their buying preferences and patterns which are derived from the 
historical data of previous customers with similar behaviours. Promo initiatives can also be supported 
by providing impactful features derived for each recommended promotion action. 
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Figure 3 Explainability needs from WHIRLPOOL Demonstrator. 

3.3.3 Technical challenges, security aspects and ethics 

Data volume and variability are the first technical challenges that arise from this use case. The volume 
of data is very important as AI models generally yield better results by having more training data, 
therefore it is a known constraint/challenge that the models can only reach their full potential after a 
few years of collecting historical data. Variability of data is also very crucial, as it describes how well 
the data represent the problem. Low variability data might be easier to predict (as the values are more 
consistent), but higher variability data will explain more possible scenarios and therefore provide 
more information to the models. Another technical challenge is the diverse explainability needs for 
the different business users (e.g. D2C sales Manager, Central demand planner, D2C logistic manager, 
Central Inventory manager, etc.), as the ideal format and explainability information required are 
different for each business user. 

Moving on, security and ethical challenges arise as confidential data are involved with the use cases. 
GDPR policies along with Whirlpool internal confidential data management policies should be fully 
incorporated, for data that always remains on premise; as failure to do so might be disruptive both 
for Whirlpool and their customers. 

 

3.4  CNH - AI for Process quality optimization 
Nowadays the use of AI for process optimization in manufacturing is gaining rapid traction with smart 
factories and Industry 5.0. Nevertheless, at the present time, the CNHi plant does not have any kind 
of AI solutions implemented on machines. For this reason, thanks to the XMANAI platform the future 
vision for the CNHi factory will be the implementation of XAI to improve the performance of the line 
production, in terms of saving costs and time for machineries maintenance and avoiding unnecessary 
stops of machineries.   

3.4.1 Predictive Maintenance  

The first problem of the XMANAI CNHi demonstrator focuses on a Heller 400 work centre, a 3 axis CNC 
milling with horizontal mandrel, in the Modena plant. In detail, machine learning algorithms will apply 
intelligent predictive maintenance on the electronic boards to prevent its failure ahead of time. 

3.4.1.1 Problems to solve 

The maintenance history on the Heller 400 work centre in CNHi industrial plant about electronic 
boards shows 4 failures in a year. Up to the present time, the failures of the electronic boards are 
treated by CNHi operators using an empirical approach; once the fault has been found, one board is 
replaced at a time to determine which board is the one to be replaced, identifying the broken card. 
The history of the Heller 400 in the CNHi factory also shows an average temperature graph which 
corresponds badly to reality. The main problem is that the sensor installed on the machine in the 
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electrical panel is a single temperature sensor that detects the overall temperature of the panel in 
which all the electronic cards are.  

3.4.1.2 Specific Data Sources 

For this use case specific data will be collected from the selected Heller 400 work centre. At the 
moment, the machine has just one temperature sensor collecting data in all electrical panels. To 
develop the use case, solve the problem previously described and obtain valid data on the actual wear 
and/or failure of the electronic boards, CHNi intends to install two temperature and one electrical 
current sensor on each board. The two temperature sensors will be installed on the hottest and 
coldest point of the board to understand if there are differences in temperature to trace the type of 
fault. Once collected data for each card, the temperature and electricity data will be extrapolated to 
be analysed and crossed with the faults of the electronic boards. The data obtained will train the 
machine learning algorithm, only after being cleaned considering the surrounding conditions and after 
that stored on a server, to have data available for the predictive maintenance algorithm. 

 

 

Table 9 Inputs / outputs in the 1st use case of the CNH’s demonstrator. 

Inputs          Outputs 

Machine Status 
Machine Faults and Warnings 
Data from electricity sensors 

Data from temperature sensors 

Fault history of electronic boards 

 

Predict the failure of electronic 
boards in advance explaining the 

type of fault 
 

 

 

3.4.2 XAI – operator collaborative maintenance  

Augmented Reality (AR) allows users to integrate virtual context into the physical environment in an 
interactive multidimensional way catching information about the surrounding environment from 
cameras and sensors through AR software. Implementing XAI enhances the AR experience by allowing 
deep neural networks to replace traditional computer vision approaches and add new features such 
as object detection, text analysis, and scene labelling. These features can be applied to create a 
collaborative industrial scenario and in detail for the implementation of the second XMANAI use case 
regarding the simulation of two micro-stops with guided procedure in AR for training purposes. 

3.4.2.1 Problems to solve 

In the CNHi production plant, the micro-stops of a particular machine are caused by an alarm and 
managed according to an internal procedure of the company, known only by experienced operators 
working in that sector, and would not require a substituting piece (which would require the 
intervention of maintenance technicians). This means that a young inexperienced operator, who does 
not know the maintenance procedure of the micro-stop, could needlessly call a maintenance 
technician to restore the machine's functionality. In terms of production efficiency, it means waste 
and loss of time, costs and a potential part of production.  

The AR procedure applied in the CNHi plant will focus on the recovery of the machine micro-stop due 
to the warning alarm. It consists of a procedure given by a series of guidelines and/or information 
given by a smart device, such as a smartphone or a tablet, useful to understand and explain what the 
origin behind the warning is and what is the possible solution to recover the system. The XAI 
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application in this case will provide an integration and collaboration between the machine system and 
the worker to apply an operator-machine collaborative maintenance.  

3.4.2.2 Specific Data Sources 

To train the expected XAI solution, data will be collected about faults of micro-stop history, machine 
warnings, machine status and tasks analysis regarding the procedures for resolving the micro-stops. 
The expected output is the simulation of different fault scenarios chosen and the prediction of what 
fault will occur based on the frequency of fault history of the machine. Task analysis, representing the 
activities performed during the restoration of the micro stop, will be associated also with images of 
the HMI and buttons involved in the specific steps. This data will be useful to implement an AR 
application to train the operators.  

 

 

 

Table 10  Inputs / outputs in the 2nd use case of the CNH’s demonstrator. 

Inputs          Outputs 

Machine status 

Machine warnings 

History fault of micro stop 

Task analysis of procedures 

Simulation of different fault 

scenarios chosen and prediction 

of what fault will occur based on 

the frequency of fault history of 

the machine 

 

3.4.3 Explainability needs 

Two main needs were recognised as relevant for the implementation of XAI in the CNH demonstrator: 
the need to reduce i) the time of machine downtime and ii) the time to detect and restore the fault 
in the manufacturing machine area. The two use cases both start from those needs: the first one to 
reduce the time lost to understand faults on the electronic boards, and optimise maintenance, and 
the second one to understand how to restore full machine functionality after possible micro-stops.  

In the first use case the main objective is the anticipation of electronic boards breakdown through 
intelligent predictive maintenance by using data coming from temperature and electricity sensors. 
Thus, obtaining an increase in machine production performance and reducing maintenance costs. 
These last needs are also valid in the second use case, the detection and recovery of micro-stops, but 
in this case the main objective is to train operators with an AR solution. The solution will be based on 
tasks analysis and images of the procedures, to avoid worthless external maintenance intervention.  

 

 

Figure 4 Explainability needs and business opportunities in CNH demonstrator. 
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3.4.4 Technical challenges, security aspects and ethics 

The main technical challenges for those two use cases regard the availability of data. In the first use 

case, data are available only to a certain extent. The sensors present in the Heller 400 machine are 

not enough to collect rich data. So, the installation of new sensors is required to have the needed 

data. At the same time, for the second use case, data need to be collected through performing task 

analysis and collecting relevant images for the micro-stops resolution, in a process which will be 

human handled.  

For the predictive maintenance use case, ethics aspects are very low and do not present significant 

risks, there could be potentially security aspects related to data which represent the status of 

machineries and thus proper security mechanisms should be applied. The second use case instead 

deals with actions to be performed directly from humans, opening up potential ethical issues related 

to the control of operators’ activities, and actions tracking. A proper ethical assessment should be 

performed to identify the protective measures needed to be implemented in the design and 

implementation phase.  

 

3.5 UNIMETRIK - AI for Smart semi-autonomous hybrid measurement 
planning (Explainable Metrology 4.0) 

Unimetrik is a Metrologic service company and ENAC certified calibration laboratory that offers 
advanced metrology services and solutions to various industries regarding calibration, measurement 
of complex products and reverse engineering. Unimetrik focuses on innovative applications in 
metrology following the rapid pace of AI in the manufacturing domain nowadays. Given the company’s 
innovative character and the growth of XAI, the XMANAI platform will provide solutions and 
improvements to well-known problems and challenges in metrology with respect to measurement 
and calibration, saving time and costs. UNIMETRIK’s demonstrator has been divided into two use 
cases: (i) optimisation of the measurement plan and (ii) optimisation of point cloud. More information 
about the two use cases is provided below.   

3.5.1  Measurement plan parameter optimization 

3.5.1.1 Problems to solve 

The first problem of the XMANAI UNIMETRIK demonstrator focuses on measurement plan 
parameters’ optimization. Specifically, this use case copes with the optimization of a number of 
scanning parameters (lateral density, exposure time and direction density) with ultimate objective to 
maximize the measurement accuracy of the scanning device (thus minimizing the deviation between 
each data point’s nominal and measured positions). 

ML techniques (both interpretable/transparent and explainable) will be employed to model the 
interrelationships between the input parameters and the desired outputs (refer to Table 10). Point 
clouds, surface orientation and the associated scanning parameters will be the inputs of our data 
problem, whereas the measurement accuracy / tolerance along with the optimal measurement 
conditions (that minimize the measurement tolerance) will constitute the desired outputs.  

 

Table 11 Inputs / outputs in the 1st use case of the UNIMETRIK’s demonstrator. 

Inputs          Outputs 



 XMANAI - Explainable Manufacturing Artificial Intelligence  

D4.1: Draft Catalogue of XMANAI AI and Graph Machine Learning Models 31 

Scanning parameters e.g. lateral 
density, exposure time, and 

direction density 
Point clouds  

Surface orientation data 

Measurement accuracy and/or 
tolerance defined as the deviation 

between nominal and actual 
values 

Optimal measurement 
parameters  

  

The role of XAI in this use case will be crucial to identify and quantify the impact of the inputs on the 
decision-making mechanisms of the trained ML models thus enhancing the understanding of the end 
user (UNIMETRIK metrologists) with respect to the effect of the scanning parameters on the 
measurement capacity of UNIMETRIK’s scanning device.  

3.5.1.2  Specific Data Sources 

Calibrated artifacts (e.g. reference spheres and other calibrated objects) will be used during the data 
collection process. The rationale behind the selection of calibrated artifacts is depicted in Figure 5.  
Specifically, the actual dimensions of a calibrated artifact are almost identical to its nominal 
dimensions (as defined in the associated CAD file). This means that the measured tolerances 
(difference between the measured and the nominal dimensions) will be almost identical to the actual 
tolerances (difference between the measured and the actual dimensions of the object).  

 

Figure 5 Graphic depicting the principle behind the measurement of tolerance using a calibrated artifact. 

In this use case, an extended data collection protocol has been defined whose main points are shortly 
described here. Each calibrated artifact will be scanned under different scanning parameters. In total, 
27 scanning conditions will be applied (3 levels in lateral density × 3 levels in direction density × 3 
levels in exposure time). The acquisition of the 27 full point clouds per calibrated artifact will lead to 
the formulation of the final dataset that will consist of the input/output parameters that were 
mentioned in Table 10 above. Different validation procedures will be explored: (1) training / testing 
the predictive capacity of the ML models on the same calibrated artifact; (2) training using data from 
one calibrated artifact (e.g. sphere) and testing on another (e.g. cylinder) and (3) training / testing 
using all the available data (using cross-validation or leave one out mechanisms). 

 

3.5.2 Point cloud optimization 
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The second case study focuses on the optimization of the generated point clouds. Point cloud 
optimisation is actually defined as the process of selecting or transforming the existing obtained data 
points towards to the generation of a new point cloud (optimal). This new ‘filtered’ point cloud will be 
optimal with respect to the following requirements: 

− It will contribute to the calculation of specific object properties (e.g. the diameter in the 
example of the reference sphere) with higher accuracy compared to the existing techniques 
that utilize the initial full point clouds. 

− It will consist of potentially less data points thus decreasing the computation complexity and 
the associated processing time that is needed.  

 

3.5.2.1 Problems to solve 

The main problem in the point cloud optimization use case is actually twofold: (Obj1) to either filter 
the full point cloud or transform the initial one towards the generation of the optimal point cloud that 
ideally includes less data points and at the same time; (Obj2) to identify the optimal measurement 
parameters, that are needed to measure accurately the desired feature/characteristic of a specific 
object (e.g. sphere diameter). The initial full point clouds along with the associated measurement 
conditions, under which the point clouds have been obtained, will be the main inputs in the data 
problem of the second use case. The outputs of the ML models of the first use case (estimated 
tolerances) will be also considered as potential inputs into the data problem (Table 11). ML-based 
optimisation methodologies and graph ML and/or CNN-based models will be explored for their 
suitability in implementing the task of predicting the optimal point cloud. XAI will also contribute to 
identify the contribution of the measurement scanning parameters on the calculation of the desired 
object properties.  

 

Table 12 Inputs / outputs in the 2nd use case of the UNIMETRIK’s demonstrator. 

Inputs          Outputs 

Full point clouds 
Scanning parameters  

Outputs of ML models 
 in use case 1  

Optimal point cloud 
 (subset of the full point cloud 

that leads to the most accurate 
calculation of one or more 

desired properties) 

  

3.5.2.2  Specific Data Sources 

The same datasets, as in the case of use case 1, will be also used for the purposes of the 2nd use case. 
This data will be further supplemented with the outcomes of the ML models of the 1st use case 
(estimated tolerances per data point). The acquisition of full point clouds from several calibrated 
objects would significantly enlarge the dataset size allowing us to use more powerful and at the same 
time more complex deep learning techniques.  

3.5.3 Explainability needs 

Overall, in the UNIMETRIK measurement and point cloud optimization problems, 
explainability can provide insights on how each parameter of the exported dataset affects the data 
points measurement and geometrical properties’ calculation. Through XAI libraries and techniques 
such as SHAP, LIME and gLIME the non-expert end-users will be able to clearly understand the 
importance of the included parameters in the specific optimization plans uncovering the decision-
making mechanism of the trained ML models. 
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Figure 6 Explainability needs in UNIMETRIK’s demonstrator. 

 

 

 

 

3.5.4 Technical challenges, security aspects and ethics 

Two main technical challenges rise in the UNIMETRIK optimization problems. First, the available data 
is limited, as it is costly to export huge amounts of data in metrology, and therefore the number of ML 
models that can be applied to the problem is limited. Second, there is a need for calibrated samples 
in order to train the models in an appropriate way. Until now, only the calibrated sphere problem has 
been explored, while more calibrated artefacts should be considered for validating the generalization 
capacity of the implemented models. Because of the high-cost data, it is very important to apply well-
known SoA security mechanisms, such as back-up and encryption tools in order to preserve data 
integrity and confidentiality. Finally for the ethics part, we do not foresee any aspect of high 
importance. 
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4 Draft catalogue of XMANAI baseline algorithms 
 

4.1 Overview 
4.1.1 Identified tasks to be addressed by XMANAI demonstrators 

The Draft catalogue of XMANAI baseline algorithms will be populated by a set of Hybrid AI and Graph 
ML models that cover the needs of the XMANAI demonstrators, described in detail in the previous 
section (Section 3) of the deliverable.  Based on the technical description of the demos use cases and 
the identification of sub-tasks within each use case, we can summarize the set of problems to be 
addressed by models in the XMANAI draft catalogue: 

1. Production Optimization 

• Production forecasting  

• Anomaly detection 

• Automated Production planning 

2. Product demand forecasting 

• Reliable demand forecasting (daily, weekly, monthly) 

• Inventory management 

• Optimization of product availability  

• Understanding buying patterns 

• Supporting promo initiatives 
3. Process/Product quality optimization 

• Intelligent diagnosis/prognosis of faults 

• Explainable decision support system for predictive maintenance 
4. Process optimization and Semi-Autonomous planning 

• Optimization of process parameters 

• Optimization of point cloud 

A major axis for the construction of the Draft catalogue of XMANAI baseline algorithms is to provide 
explainable AI solutions to the above stated problems. The selection of baseline algorithms, described 
in the following section, is therefore intended to satisfy the two-fold purpose of providing performant 
solutions that also fulfill the requirements of the different business users for explanations. 

4.1.2 Algorithm selection 

The selection of Hybrid and Graph ML models to populate the Draft catalogue of XMANAI baseline 
algorithms is a two-step procedure. Firstly, a primary model (ML/DL, Graph ML/DL) is depicted as 
suitable to address at least one of the above stated problems, by means of adoption by the technical 
partners, reported efficiency and scalability. Secondly, each primary model is coupled with an 
explainability component in order to provide interpretable solutions to these problems. The rationale 
driving the first step of primary model selection, is based on the technical partners experience 
regarding the suitability of algorithms to solve particular tasks. Efficiency and scalability of the selected 
primary models will be evaluated in practice during the experimental phase in the realistic industrial 
settings of the demonstrators. This evaluation will be made in order to ensure that the selected 
models in the final trained catalogue will be able to accomplish with the requirements in terms of 
efficiency and scalability. We anticipate that different sets of algorithms will fit different usage 
scenarios with respect to cost-effectiveness and timely constraints. The basic implementations of the 
primary algorithms are considered here, to facilitate the coupling of primary models with 
explainability techniques. Modified versions of the primary algorithms, that are meant to meet case-
specific requirements (such as increasing the speed of computations) will be examined within the 
iterative process of experimentation, as the project progresses. As for the second step of identifying 
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the appropriate explanatory components to equip each primary model, the selection of methods has 
focused on providing explanations that can provide generic interpretable knowledge using methods 
that are valid for data scientists. Henceforth, one of the main objectives of the remaining WP4 
deliverables will be to add to these explanations complementary explanations that can be rich and 
valuable for business users, according to their needs.  

As this is a draft catalogue, not all the algorithms will be implemented. In further steps of WP4, we 
will need to make a proper selection of the algorithms considering the maturity of the libraries and 
implementations, as well as the suitability to be adapted to the real data of the demonstrators. 

The overall process that was established to construct the draft catalogue is described as follows: 

• A set of Hybrid and Graph ML models were proposed to address the problems put forth by 
each demonstrator. This is accomplished by collaborative effort between the consortium 
business and technical partners assigned to work on each pilot.  

• Information on the proposed primary models and their corresponding explainability 
components is translated into model cards. 

• The model cards were consolidated in order to: 
o Summarize the use of a single model in more than one demonstrator 
o Achieve a unified form in both Hybrid and Graph ML algorithm cards 

In the following sections we describe in detail the scope and characteristics of Hybrid and Graph ML 
algorithms, also providing the respective model cards for each category. 

4.1.3 Model Cards Description 

The Model Cards aim to synthesise and group in a visual way information about the different baseline 
models selected from different points of view. 

 

 

Figure 7 Algorithm Card Structure - Example. 

The information provided in the card is divided into 4 groups: 

• Predictive Insights: Information about the model employed to solve a specific problem. 

• Explanation Insights: Details about the kind of explainability that complements the predictive 
results. 
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• General Application: In which application the model is expected to be employed. 

• Manufacturing Scenarios: Specific information of their potential implantation to solve the 
manufacturing scenarios from the demonstrators, considering their specific inputs and 
outputs. 

4.2 Hybrid AI algorithms (Catalogue Model Cards)  
 

4.2.1 Description  

In this section, a number of hybrid AI algorithms are presented. First, it is important to clarify which 

types of algorithms fall into this group. Hybrid algorithms are those models that are composed of a 

traditional Machine or Deep Learning black-box algorithm and a layer of explainability using different 

explainability tools. Transparent models, which are interpretable by design, will also be considered in 

this group. The taxonomy employed to categorize the different explainability tools to be combined 

with the black-box models is described in D1.1 “State of the Art Review in XMANAI Research Domains”. 

Although in this deliverable Transparent, Post-hoc and Hybrid approaches are grouped separately, in 

D4.1, all of them are considered as part of the Hybrid ML models in order to be able to include all the 

categories in the draft catalogue. 

 

Figure 8 Hybrid ML Explainability from D1.1 “State of the Art Review in XMANAI Research Domains”. 

 

Following this approach, the next explainability categories are included: 

• Transparent models: Those that are interpretable by design without the need for any 

explainability tool, such as decisions trees or linear models. 

• Post-hoc techniques: A second method is employed to explain the decisions made by a 

previous black-box model. Two groups are included in this category: model-agnostic 

techniques and model-specific. 

o Model-agnostic: This group of explainability tools can be applied to any ML model, 

regardless of the family it belongs. Most of the proposed baseline models include a 

model-agnostic post-hoc tool to interpret their predictions. Different model-agnostic 

approaches can be used to provide explainability: 
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▪ Explanations by simplification: This group includes explainability approaches 

that aim to approximate a black-box model with a transparent model, such as 

LIME (Ribeiro, et al., 2016) or G-REX (Konig, et al., 2008). 

▪ Feature relevance explanations: These methods highlight the influence or 

contribution of each input feature to the black box results, as in SHapley 

Additive exPlanations (Lundberg & Lee, 2017). 

▪ Explanations by example: This group includes the type of explanations that 

focus on understanding the Machine Learning model by selecting appropriate 

input examples, such as the counterfactual explanations. 

▪ Visual explanations: These techniques aim to provide to the end user a 

visually conceivable explanation of a black-box model's prediction, in form of 

heatmaps or plot dependencies among others. Often, these visualizations are 

combined with other explainability techniques to improve their 

understanding. Such explanations also allow the user to understand the 

internal reasoning process of transparent models with the aim of making 

them even more transparent. 

o Model-specific: This group includes methods that only apply to a particular family of 

algorithms, such as DeepRED (Zilke, et al., 2016) for multilayer neural networks. 

• Hybrid architectures: Attention mechanisms will be considered in this group. These 

approaches can be considered as feature relevance explainability methods. 

 

4.2.2 Algorithms (Cards) 

4.2.2.1 Machine Learning 

Support Vector Machines (SVM) 

HM #1 SVM + SHAP (Classification) 

Primary Model  SVM 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification 
Support Vector 

Machines 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature Relevance 

General Application 
SVM predicts when an electronic board will fail soon, finding a line/hyperplane 

(in multidimensional space) that separates two classes (Card faulty and Working 

card) and explains its predictions using SHAP.  

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Anomaly Detection 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 
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HM #2  SVM + LIME (Classification) 

Primary Model  SVM 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification 
Support Vector 

Machines 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Feature Relevance 

General Application 
SVM predicts when an electronic board will fail soon, finding a line/hyperplane 

(in multidimensional space) that separates two classes (Card faulty and Working 

card) and explains its predictions using LIME.  

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Anomaly Detection 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

 

HM #3 SVM + Decision Tree (Classification) 

Primary Model  SVM 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification 
Support Vector 

Machines 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc Decision Tree Simplification 

General Application 

SVM classification model learns a high dimensional hyper-plane based on the 

input data to predict whether supplier-related risks will occur. After training a 

less complex Decision Tree model is built based on the SVM to extract rules 

using the support vectors of the trained model. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Supply Base Decisions 

Product/ supplier IDs, 

order number, quantity 

ordered, due date, receipt 

date (Transactional data, 

Consumer & product 

master) 

Prediction of supplier-

related risk occurrence 

 

HM #4  SVM + SHAP (Regression) 

Primary Model  SVM Learning Category Model Category 
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Supervised  Machine Learning 

Task  Algorithm Family 

Regression 
Support Vector 

Machines 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP 
Feature relevance / 

Local Explanations 

General Application 

Kernel SVR that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions both locally and globally 

using SHAP. The optimal measurement parameters will be defined based on 

model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #5 SVM + LIME (Regression) 

Primary Model  SVM 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  
Support Vector 

Machines 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Local Explanations 

General Application 
Kernel SVR that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using LIME. The optimal 

measurement parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Predictive Maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #6 SVM + gLIME (Regression) 
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Primary Model  SVM 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression 
Support Vector 

Machines 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc gLIME 
Graphical / Local 

Explanations 

General Application 
Kernel SVR that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using gLIME. The optimal 

measurement parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #7 SVM + Permutation Importance (Regression) 

Primary Model  SVM 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression 
Support Vector 

Machines 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc 
Permutation 

Importance 
Feature Relevance 

General Application 

Kernel SVR that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using feature 

permutation importance. The optimal measurement parameters will be defined 

based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #8  SVM + Decision Tree (Regression) 

Primary Model  SVM 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 
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Regression  
Support Vector 

Machines 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc Decision Tree Simplification 

General Application 

Measurement plan parameter optimization 

Kernel SVR that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and uses a single Decision Tree (equivalently set of 

rules) as a global surrogate to explain its predictions. The optimal measurement 

parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Fa

ults 

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 

Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

Extreme Gradient Boosting (XGBoost) 

HM #9  XGBoost + LIME (Regression) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  
Extreme Gradient 

Boosting 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Feature relevance 

General Application 

Measurement plan parameter optimization 

XGBoost tree-based ensemble that predicts the accuracy and/or tolerance in 

the dimensional measurement of an object and explains its predictions using 

LIME. The optimal measurement parameters will be defined based on model 

predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 
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FORD Production Forecasting 

Machine 

Status/Warnings/Fa

ults 

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 

Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #10  XGBoost + LIME (Classification) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification 
Extreme Gradient 

Boosting 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Feature relevance 

General Application 
XGBoost classification model is trained based on the input data to predict 

whether backorders will occur. After training, the LIME method assigns 

importance scores on the inputs based on their contribution to the prediction. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Inventory Management 

Product/ supplier 

IDs, order number, 

quantity ordered, 

due date, receipt 

date (Transactional 

data, Consumer & 

product master) 

Prediction of backorders 

occurrence 

 

HM #11  XGBoost + gLIME (Regression) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  
Extreme Gradient 

Boosting 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc gLIME 
Graphical / Local 

Explanations 
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General Application 

XGBoost tree-based ensemble that predicts the accuracy and/or tolerance in 

the dimensional measurement of an object and explains its predictions using 

gLIME. The optimal measurement parameters will be defined based on model 

predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #12  XGBoost + TreeSHAP (Regression) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  
Extreme Gradient 

Boosting 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc TreeSHAP Feature relevance 

General Application 
XGBoost regression model is trained to predict the future demand based on the 

inputs. After the training, TreeSHAP is used to explain how each feature 

contribute to the model output.   

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 
Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

 

HM #13 XGBoost + SHAP (Regression) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  
Extreme Gradient 

Boosting 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature relevance 

General Application 

XGBoost tree-based ensemble that predicts the accuracy and/or tolerance in 

the dimensional measurement of an object and explains its predictions using 

SHAP. The optimal measurement parameters will be defined based on model 

predictions. 
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Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #14  XGBoost + SHAP (Classification) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification 
Extreme Gradient 

Boosting 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature relevance 

General Application 
XGBoost classification model is trained based on the input data to predict 

whether backorders will occur. After training, the SHAP method assigns 

importance scores on the inputs based on their contribution to the prediction. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Inventory Management 

Product/ supplier 

IDs, order number, 

quantity ordered, 

due date, receipt 

date (Transactional 

data, Consumer & 

product master) 

Prediction of backorders 

occurrence 

 

HM #15  XGBoost + Decision Tree (Regression) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification 
Extreme Gradient 

Boosting 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc Decision Tree Simplification 

General Application 

XGBoost tree-based ensemble that predicts the accuracy and/or tolerance in 

the dimensional measurement of an object and uses a single Decision Tree 

(equivalently set of rules) as a global surrogate to explain its predictions. The 

optimal measurement parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 
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UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #16  XGBoost + Permutation Importance (Regression) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification 
Extreme Gradient 

Boosting 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc 
Permutation 

Importance 
Feature Relevance 

General Application 

XGBoost tree-based ensemble that predicts the accuracy and/or tolerance in 

the dimensional measurement of an object and explains its predictions using 

feature permutation importance. The optimal measurement parameters will be 

defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

Random Forest 

HM #17  Random Forest + SHAP (Classification) 

Primary Model  Random Forest 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification Random Forest 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature relevance 

General Application 
Random Forest classification model is trained based on the input data to predict 

whether backorders will occur. After training, SHAP assigns importance scores 

on the inputs based on their contribution to the prediction. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Inventory Management 

Product/ supplier 

IDs, order number, 

quantity ordered, 

due date, receipt 

Prediction of backorders 

occurrence 
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date (Transactional 

data, Consumer & 

product master) 

CNH Predictive Maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

 

HM #18 Random Forest + LIME (Classification) 

Primary Model  Random Forest 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification Random Forest 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Feature relevance 

General Application 
Random Forest classification model is trained based on the input data to predict 

whether backorders will occur. After training, LIME assigns importance scores 

on the inputs based on their contribution to the prediction. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Inventory Management 

Product/ supplier 

IDs, order number, 

quantity ordered, 

due date, receipt 

date (Transactional 

data, Consumer & 

product master) 

Prediction of backorders 

occurrence 

 

HM #19  Random Forest + LIME (Regression) 

Primary Model  Random Forest 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  Random Forest 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Feature Relevance 

General Application 
Random Forest regression model is trained to predict the future demand based 

on the inputs. After the training, LIME is used to explain how each feature 

contribute to the model output.   

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 
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FORD Production Forecasting 

Machine 

Status/Warnings/Fault

s 

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 
Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #20  Random Forest + TreeSHAP (Regression) 

Primary Model  XGBoost 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  Random Forest 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc TreeSHAP Feature relevance 

General Application 
Random Forest regression model is trained to predict the future demand based 

on the inputs. After the training, TreeSHAP is used to explain how each feature 

contribute to the model output.  

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Fa

ults 

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 

Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

 

HM #21  Random Forest + SHAP (Regression) 

Primary Model  Random Forest 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression Random Forest 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature relevance 
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General Application 

Random Forest tree-based ensemble that predicts the accuracy and/or 

tolerance in the dimensional measurement of an object and explains its 

predictions locally and globally using SHAP. The optimal measurement 

parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Predictive Maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #22  Random Forest + gLIME (Regression) 

Primary Model  Random Forest 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  Random Forest 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc gLIME 
Graphical / Local 

Explanations 

General Application 

Random Forest tree-based ensemble that predicts the accuracy and/or 

tolerance in the dimensional measurement of an object and explains its 

predictions using gLIME. The optimal measurement parameters will be defined 

based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #23  Random Forest + Decision Tree (Regression) 

Primary Model  Random Forest 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  Random Forest 

Explainability  Explainability Category  Explainability Tool  Explainability Type  
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Global Surrogate Decision Tree Simplification 

General Application 

Random Forest tree-based ensemble that predicts the accuracy and/or 

tolerance in the dimensional measurement of an object and uses a single 

Decision Tree (equivalently ruleset) as a global surrogate to explain its 

predictions. The optimal measurement parameters will be defined based on 

model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #24  Random Forest + Permutation Importance (Regression) 

Primary Model  Random Forest 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression  Random Forest 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc 
Permutation 

Importance 
Feature Relevance 

General Application 

Random Forest tree-based ensemble that predicts the accuracy and/or 

tolerance in the dimensional measurement of an object and explains its 

predictions using feature permutation importance. The optimal measurement 

parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

Decision Trees 

HM #25 Decision Tree (Classification) 

Primary Model  Decision Tree 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Classification Decision Trees 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Transparent Self-explained  Self-explained 
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General Application 

Decision Tree classification model is trained based on the input data to predict 

whether supplier-related risks will occur. The model is self-explanatory through 

the human readable rules that allow a direct understanding of the prediction 

path. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Supply Base Decisions 

Product/ supplier IDs, 

order number, quantity 

ordered, due date, receipt 

date (Transactional data, 

Consumer & product 

master) 

Prediction of supplier-

related risk occurrence 

 

 

HM #26 Decision Tree (Regression) 

Primary Model  Decision Tree 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression Decision Trees 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Transparent Self-explained  Self-explained  

General Application 

Decision Tree that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object. Model predictions are explained directly by the 

graphical representation of the tree and the analysis of the decision path. The 

optimal measurement parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Predictive Maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #27  iForest + SHAP (Classification) 

Primary Model  Decision Tree 

Learning Category Model Category 

Unsupervised Machine Learning 

Task  Algorithm Family 

Clustering Decision Trees 
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Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature Relevance 

General Application 
In an Isolation Forest, randomly sub-sampled data is processed in a tree 

structure based on randomly selected features and it explains its output 

through Shapley values. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Supply Base Decisions 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

 

Others 

HM #28  k-Nearest Neighbors (Classification) 

Primary Model  kNN 

Learning Category Model Category 

Supervised Machine Learning 

Task  Algorithm Family 

Classification Neighbors 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Transparent Self-explained  Self-explained  

General Application 
kNN Is an approach to data classification that estimates how likely a data point 

is to be a member of one group or the other depending on what group the data 

points nearest to it are in. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Supply Base Decisions 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

 

HM #29  Logistic Regression (Classification) 

Primary Model  Logistic Regression 

Learning Category Model Category 

Supervised Machine Learning 

Task  Algorithm Family 

Classification Linear Models 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Transparent Self-explained  Self-explained  
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General Application 
It is used to understand the relationship between the dependent variable and 

one or more independent variables by estimating probabilities using a logistic 

regression equation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Supply Base Decisions 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

 

HM #30  Local Outlier Factor (LOF) + SHAP (Clustering) 

Primary Model  Decision Tree 

Learning Category Model Category 

Unsupervised  Machine Learning 

Task  Algorithm Family 

Clustering Neighbors 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature Relevance 

General Application 
It measures the local deviation of the density of a given sample with respect to 

its neighbors and explains its output through Shapley values.   

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Supply Base Decisions 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Detection on which 

electronic board failed 

 

HM #31  Linear Regression (Ridge, Lasso) (Regression) 

Primary Model  Linear Regression 

Learning Category Model Category 

Supervised  Machine Learning 

Task  Algorithm Family 

Regression Linear Models 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Transparent Self-explained  Self-explained  

General Application 

Linear regression model that predicts the accuracy and/or tolerance in the 

dimensional measurement of an object. Model predictions are explained 

directly by the weight coefficients of the linear transformation. The optimal 

measurement parameters will be defined based on model predictions. 

Application in demonstrators  



 XMANAI - Explainable Manufacturing Artificial Intelligence  

D4.1: Draft Catalogue of XMANAI AI and Graph Machine Learning Models 53 

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

4.2.2.2 Deep Learning 

Recurrent Neural Networks (RNN) 

HM #32  RNN + SHAP (Regression) 

Primary Model  RNN 

Learning Category Model Category 

Supervised  Deep Learning 

Task Algorithm Family 

Regression  
Recurrent Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature relevance 

General Application 
RNN that leverages the temporal correlation between the different input 

samples to infer a future value and explain through SHAP values the influence of 

each input variable on the output 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 
Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

 

HM #33 RNN + LIME (Regression) 

Primary Model  RNN 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression  
Recurrent Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Feature relevance 

General Application 

RNN that leverages the temporal correlation between the different input 

samples to infer a future value and explain through LIME values the influence of 

each input variable on the output for a specific instance 

Application in demonstrators  
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Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Fault

s 

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 
Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

 

HM #34 RNN + DeepLift (Regression) 

Primary Model  RNN 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression  
Recurrent Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc DeepLift Feature relevance 

General Application 
RNN learns the future value of product demand based on the input features. 

After the training, DeepLift is used to assign input features contributions to the 

output.   

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 
Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

 

HM #35 RNN + Decision Tree (Regression) 

Primary Model  RNN 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression  
Recurrent Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc Decision Tree Simplification 

General Application 
RNN that leverages the temporal correlation between the different input 

samples to infer a future value. After the RNN training a decision tree is trained 

on the predictions of the RNN so as to add transparency. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 
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FORD Production Forecasting 

Machine 

Status/Warnings/Faults  

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

 

HM #36 RNN + Attention (Regression) 

Primary Model  RNN 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression  
Recurrent Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Hybrid Feature Relevance Attention 

General Application 
RNN that leverages the temporal correlation between the different input 

samples to infer a future value. An attention mechanism is used simultaneously 

to highlight the contribution of each input feature to the output. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Faults  

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

 

Convolutional Neural Networks (CNN) 

HM #37 CNN + SHAP (Regression) 

Primary Model  CNN 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression  
Convolutional Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc SHAP Feature relevance 

General Application 
CNN learns the future value of product demand based on the input features. 

After the training, SHAP is used to explain how each feature contributes to the 

model output. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Demand Forecasting 

Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

 

HM #38 CNN + LIME (Regression) 
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Primary Model  CNN 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression  
Convolutional Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Feature relevance 

General Application 
CNN learns the future value of product demand based on the input features. 

After the training LIME is used to explain how each feature contributes to the 

model output. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Demand Forecasting 

Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

 

HM #39 CNN + DeepLift (Regression) 

Primary Model  CNN 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression  
Convolutional Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc DeepLift Feature relevance 

General Application 
CNN learns the future value of product demand based on the input features. 

After the training DeepLift is used to assign input features contributions to the 

output. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Demand Forecasting 

Past sales data, date 

related data 

(Transactional data) 

Prediction of future 

demand 

 

Autoencoders 

HM #40 Autoencoder + SHAP (Clustering) 

Primary Model  Autoencoder 

Learning Category Model Category 

Unsupervised Deep Learning 

Task  Algorithm Family 

Clustering Autoencoders 
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Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc Feature Relevance SHAP 

General Application 
An autoencoder that aims to reconstruct its input data and alert of anomalies 

(high reconstruction error). Through SHAP, the contribution of each input 

feature to the anomaly will be presented. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Anomaly Detection 

Machine 

Status/Warnings/Faults  

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

 

HM #41 Autoencoder + LIME (Clustering) 

Primary Model  Autoencoder 

Learning Category Model Category 

Unsupervised Deep Learning 

Task  Algorithm Family 

Clustering Autoencoders 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc LIME Feature Relevance 

General Application 
An autoencoder that aims to reconstruct its input data and alert of anomalies 

(high reconstruction error). Through LIME, the contribution of each input 

feature to the anomaly will be presented. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Anomaly Detection 

Machine 

Status/Warnings/Faults  

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

 

HM #42 Autoencoder + Attention (Clustering) 

Primary Model  Autoencoder 

Learning Category Model Category 

Unsupervised Deep Learning 

Task  Algorithm Family 

Clustering Autoencoders 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Hybrid Attention Feature Relevance 

General Application 
An autoencoder that aims to reconstruct its input data and alert of anomalies 

(high reconstruction error). An attention mechanism is used simultaneously to 

highlight the contribution of each input feature to the output 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 
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FORD Anomaly Detection 

Machine 

Status/Warnings/Faults  

Production Counters  

Cycle Times 

Prediction of final 

production at the end of 

the day 

 

Neural Networks 

HM #43 Neural Network (NN) + LIME (Regression) 

Primary Model  Neural Network 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression 
Artificial Neural 

Networks 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc   LIME 
Feature relevance / 

Local Explanations 

General Application 
Neural Network that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using LIME. The optimal 

measurement parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #44  Neural Network (NN) + SHAP (Regression) 

Primary Model  Neural Network 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression 
Artificial Neural 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Post-hoc   SHAP Feature relevance 

General Application 

Neural Network that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using SHAP. The optimal 

measurement parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 



 XMANAI - Explainable Manufacturing Artificial Intelligence  

D4.1: Draft Catalogue of XMANAI AI and Graph Machine Learning Models 59 

HM #45 Neural Network (NN) + gLIME (Regression) 

Primary Model  Neural Network 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression 
Artificial Neural 

Networks 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc   gLIME 
Graphical / Local 

Explanations 

General Application 

Neural Network that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using gLIME. The optimal 

measurement parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #46 Neural Network (NN) + Decision Tree (Regression) 

Primary Model  Neural Network 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression 
Artificial Neural 

Networks 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Global Surrogate   Deep Red 
Simplification / Global 

Explanations 

General Application 

Neural Network that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using a global surrogate 

Decision Tree. The optimal measurement parameters will be defined based on 

model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #47 Neural Network (NN) + DeepLift (Regression) 

Primary Model  Neural Network 
Learning Category Model Category 

Supervised  Deep Learning 
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Task  Algorithm Family 

Regression 
Artificial Neural 

Networks 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc DeepLift 
Local Explanations / 

Feature Relevance 

General Application 
Neural Network that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using DeepLift. The 

optimal measurement parameters will be defined based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

HM #48 Neural Network (NN) + Permutation Importance (Regression) 

Primary Model  Neural Network 

Learning Category Model Category 

Supervised  Deep Learning 

Task  Algorithm Family 

Regression 
Artificial Neural 

Networks 

Explainability  

Explainability Category  Explainability Tool  Explainability Type  

Post-hoc 
Permutation 

Importance 
Feature Relevance 

General Application 

Neural Network that predicts the accuracy and/or tolerance in the dimensional 

measurement of an object and explains its predictions using feature 

permutation importance. The optimal measurement parameters will be defined 

based on model predictions. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

4.3 Graph ML algorithms (Catalogue Model Cards)  
 

4.3.1 Description  

The set of Graph ML algorithms that were selected for the Draft Catalogue of XMANAI baseline models 
is presented in this section. Similarly to Hybrid AI models, the XMANAI Graph ML baseline algorithms 
are composed of a primary black-box model coupled with an explainability layer. Knowledge Graph 
modelling is also considered here, as the interpretable by design solution to achieve explainability at 
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the data level and examine underlying causal relations. Based on the taxonomy documented in 
chapter 3.4 of the deliverable D1.1-“State of the art review in XMANAI research domains”, the primary 
black-box models to be included in the Draft Catalogue belong to the following categories and families 
of Graph ML/DL algorithms: 

1. Geometric Deep Learning 

• Spatio-Temporal Graph Neural Networks 

• Convolutional Graph Neural Networks 

• Graph Attention Networks 
2. Graph Representation Learning 

• Graph Neural Networks & Auto-Encoders 

• Random Walk based embeddings 

Regarding the explainability techniques that are applied to these black-box Graph Neural Networks 
(GNNs) and embeddings, the D1.1 review was not extended towards that direction. We therefore 
adopt the taxonomy presented in  (Yuan, et al., 2021) which is summarized in the below picture. 

 

Figure 9 The taxonomy proposed by (Yuan, et al., 2021) for explaining GNNs. 

The methods selected by technical partners to equip the primary Graph ML algorithms with 
explainability components, cover the spectrum of instance-level explanations in the proposed 
taxonomy, namely: 

• Gradients/Features based explanations: Gradient-based methods for Deep Neural Networks, 
such as Sensitivity Analysis (SA) (Simonyan, et al., 2014) and Guided BackPropagation 
(Springenberg, et al., 2015), use back-propagation (BP) to explain a certain output by means 
of the gradients of the model’s decision function with respect to the input features. The 
explanations are offered by both methods in the form of Saliency maps. SA and Guided BP 
have been applied to GNNs by (Baldassarre & Azizpour, 2019). Feature-based methods such 
as Class Activation Mapping (CAM) and variant gradient-weighted CAM (Grad-CAM), 
interpolate the hidden features extracted for a specific output to the input feature space and 
create hidden feature maps to explain the prediction. CAM and Grad-CAM are applied to 
GNNs by (Pope, et al., 2019). 

• Perturbation based explanations: These methods study the effect of perturbing the input 
features to the model’s outcome. Methods such as GNNExplainer (Ying, et al., 2019) and 
ZORRO (Funke, et al., 2021) are developed for deep GNNs, based on generating node, edge or 
node feature masks under perturbation of the input nodes or edges (depending on the task) 
and combining them with the input Graph to explain the model’s decisions. 
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• Decomposition based explanations: Methods in this category decompose a model’s 
prediction into a combination of the inputs, while all terms in the decomposition must sum 
up to the final prediction score. Examples of such methods applied to GNNs include Layer-
wise Relevance Propagation (LRP) (Baldassarre & Azizpour, 2019) and Excitation BP (Pope, et 
al., 2019). To overcome limitations of these methods in explaining the importance of single 
nodes, (Schnake, et al., 2021) propose GNN-LRP to apply LRP for different graph walks and 
explain the output as a collection of walks that are relevant to the prediction.  

• Surrogate model: These methods offer explanations by locally approximating the GNN 
model’s predictions with an interpretable surrogate model. For example, Graph-LIME by 
(Huang, et al., 2020) fits a Hilbert-Schmidt Independence Criterion (HSIC) Lasso, a kernel-
based method as local surrogate, on a local dataset comprised by neighbouring nodes and 
their corresponding predictions. The weights of HSIC Lasso are used to explain both the 
surrogate and the original GNN model’s node prediction. A different approach based on 
Probabilistic Graphical Modelling is followed by (Vu & Thai, 2020). They propose PGM-
Explainer to provide local explanations to a GNN model’s predictions by an interpretable 
Bayesian Network, fit to the local dataset which is created under random perturbations of the 
input graph node features. PGM-Explainer can explain the outcomes of both node and graph 
classification tasks, whereas Graph-LIME is limited to explaining node predictions. 

Finally, a recent decomposition-based approach that incorporates elements from surrogate and 
perturbation-based methods, is also considered as an option for explaining GNNs. (Duval & 
Malliaros, 2021) extend the computation of Shapley values from co-operative game theory to 
graphs. They propose GraphSVX explainer to decompose a local prediction into node and feature 
contributions, by fitting a local surrogate to a perturbed local dataset. Validated on both node and 
graph classification, GraphSVX is found to provide accurate, meaningful and robust explanations. 

Although a single method is included in the algorithm cards for each type of instance-level 
explanations proposed by technical partners, it is anticipated that other methods of the same type 
may be also considered during the experimental phase of the project. For example, GNNExplainer 
may be an initial method of choice to provide Perturbation based explanations to a GNN 
predictions, however the use of ZORRO may also be examined in the future for the same purpose. 
Finally, in most cases a single Graph ML primary model is coupled with more than one type of 
methods (e.g., perturbation based and surrogate), with the aim to enable the provision of rich 
explanations to the various end users. 

The composite Graph ML baseline algorithm cards are presented in the next section, categorized 
with respect to the primary models. 

 

4.3.2 Algorithms (Cards) 

4.3.2.1 Geometric Deep Learning 

Spatio-Temporal Graph Neural Networks 

GM #1  ATGN + GNNExplainer (Clustering) 

Primary Model 
Attentive Temporal 

Graph Network 

Learning Category Model Category 

Unsupervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Clustering Spatio-temporal GNNs 

Explainability  Explainability Category  Explainability Tool  Explainability Type  
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Instance-level GNNExplainer Perturbation based 

 
 

General Application 

Temporal Graph Neural Network with attention mechanism for anomaly 

detection. Local explanations will be produced by GNNExplainer via 

perturbations of the input graph nodes features. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Anomaly Detection 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Prediction of unwanted 

situations 

 

GM #2  ATGN + PGM-Explainer (Clustering) 

Primary Model 
Attentive Temporal Graph 

Network 

Learning Category Model Category 

Unsupervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Clustering Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level PGM-Explainer Surrogate 

 

General Application 
Temporal Graph Neural Network with attention mechanism for anomaly 

detection. Local explanations will be provided by PGM-Explainer via surrogate 

model approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Anomaly Detection 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Prediction of unwanted 

situations 

 

GM #3  STGCN + GNNExplainer (Regression) 

Primary Model 
Spatio-Temporal Graph 
Convolutional Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Regression Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level GNNExplainer Perturbation based 
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General Application 

A group of GNNs that capture the spatial and temporal dependencies of a graph 

nodes and can be used for future node values forecasting (CNN-based). Local 

explanations will be produced by GNNExplainer via perturbations of the input 

graph nodes features. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR 
Product Demand 

Forecasting 

Previous and current 

product demand, 

web visits sequential 

data 

Future product demand 

 

GM #4  STGCN + Guided BP (Regression) 

Primary Model 
Spatio-Temporal Graph 
Convolutional Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Regression Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level Guided BP Gradient/Feature based 

 

General Application 
A group of GNNs that capture the spatial and temporal dependencies of a graph 

nodes and can be used for future node values forecasting (CNN-based). Local 

explanations for node predictions will be produced by Guided BP.  

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR 
Product Demand 

Forecasting 

Previous and current 

product demand, 

web visits sequential 

data 

Future product demand 

 

GM #5 STGCN + PGM-Explainer (Regression) 

Primary Model 
Spatio-Temporal Graph 
Convolutional Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Regression Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level PGM-Explainer Surrogate 
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General Application 

A group of GNNs that capture the spatial and temporal dependencies of a graph 

nodes and can be used for future node values forecasting (CNN-based). Local 

explanations will be provided by PGM-Explainer via surrogate model 

approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR 
Product Demand 

Forecasting 

Previous and current 

product demand, 

web visits sequential 

data 

Future product demand 

 

GM #6 GCRN + GNNExplainer (Regression) 

Primary Model 
Graph Convolutional 
Recurrent Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Regression Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level GNNExplainer Perturbation based 

 

General Application 

A group of GNNs that capture the spatial and temporal dependencies of a graph 

nodes and can be used for future node values forecasting (RNN-based). Local 

explanations will be produced by GNNExplainer via perturbations of the input 

graph nodes features. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR 
Product Demand 

Forecasting 

Previous and current 

product demand, 

web visits sequential 

data 

Future product demand 

 

GM #7 GCRN + Guided BP (Regression) 

Primary Model Graph Convolutional 

Recurrent Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Regression Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level Guided BP Gradient/Feature based 
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General Application 
A group of GNNs that capture the spatial and temporal dependencies of a graph 

nodes and can be used for future node values forecasting (RNN-based). Local 

explanations for node predictions will be produced by Guided BP. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Demand Forecasting 

Previous and current 

product demand, 

web visits 

(sequential, 

multivariate) 

Future product demand 

 

GM #8 GCRN + PGM-Explainer (Regression) 

Primary Model Graph Convolutional 

Recurrent Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Regression Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level PGM-Explainer Surrogate 

General Application 

A group of GNNs that capture the spatial and temporal dependencies of a graph 

nodes and can be used for future node values forecasting (RNN-based). Local 

explanations will be provided by PGM-Explainer via surrogate model 

approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Demand Forecasting 

Previous and current 

product demand, 

web visits 

(sequential, 

multivariate) 

Future product demand 

 

GM #9 TGN + GNNExplainer (Regression) 

Primary Model Temporal Graph Networks 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level GNNExplainer Perturbation based 
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General Application 

A group of GNNs that capture the spatial and temporal dependencies of a graph 
nodes and can be used for future node values forecasting. Local explanations will 

be produced by GNNExplainer via perturbations of the input graph nodes 
features. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Data quality parts 

Prediction of final 

production at the end 

of the day 

WHR Demand Forecasting 

Previous and current 

product demand, web 

visits sequential data 

Future product demand 

 

GM #10 TGN + PGM-Explainer (Regression) 

Primary Model Temporal Graph Networks 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Regression Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level PGM-Explainer Surrogate 

General Application 
A group of GNNs that capture the spatial and temporal dependencies of a graph 
nodes and can be used for future node values forecasting. Local explanations will 

be provided by PGM-Explainer via surrogate model approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Data quality parts 

Prediction of final 

production at the end 

of the day 

WHR Demand Forecasting 

Previous and current 

product demand, web 

visits sequential data 

Future product demand 

 

GM #11 TGN + Guided BP (Regression) 

Primary Model Temporal Graph Networks 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 
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Task  Algorithm Family 

Regression Spatio-temporal GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level Guided BP Gradients/Features 

General Application 
A group of GNNs that capture the spatial and temporal dependencies of a graph 
nodes and can be used for future node values forecasting. Local explanations for 

node predictions will be produced by Guided BP. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Forecasting 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Data quality parts 

Prediction of final 

production at the end of 

the day 

WHR Demand Forecasting 

Previous and current 

product demand, web 

visits sequential data 

Future product demand 

 

Convolutional Graph Neural Networks 

GM #12 GCN + ZORRO (Classification) 

Primary Model 
Graph Convolutional 

Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification Convolutional GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level ZORRO Perturbation based 

General Application 
Graph Convolutional Network is based on an efficient variant of convolutional 
neural networks which operate directly on graphs. Local explanations will be 

produced by ZORRO via perturbations of the input graph nodes features. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Predictive maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Prediction on which 

electronic board will fail 

soon 

 

GM #13 GCN + Graph-LIME (Classification) 
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Primary Model 
Graph Convolutional 

Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification Convolutional GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level Graph-LIME Surrogate 

General Application 
Graph Convolutional Network is based on an efficient variant of convolutional 
neural networks which operate directly on graphs. Local explanations will be 

provided by Graph-LIME via surrogate model approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Predictive maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Prediction on which 

electronic board will fail 

soon 

 

GM #14 DCNN + GNNExplainer (Classification) 

Primary Model 
Diffusion- Convolutional 

Neural Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification Convolutional GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level GNNExplainer Perturbation based 

General Application 
Diffusion-based representations can be learned from graph structured data and 

used as an effective basis for node classification. Local explanations will be 
produced by GNNExplainer via perturbations of the input graph nodes features. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Predictive maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Prediction on which 

electronic board will fail 

soon 

 

GM #15 DCNN + Graph-LIME (Classification) 
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Primary Model 
Diffusion- Convolutional 

Neural Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification Convolutional GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level Graph-LIME Surrogate 

General Application 
Diffusion-based representations can be learned from graph structured data and 

used as an effective basis for node classification. Local explanations will be 
provided by Graph-LIME via surrogate model approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

CNH Predictive maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Prediction on which 

electronic board will fail 

soon 

 

GM #16 GCNN + Graph-LIME (Classification) 

Primary Model 
Graph Convolutional Neural 

Network 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification Convolutional GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level Graph-LIME Surrogate 

General Application 
A group of GNNs that perform convolutions by information propagation 

considering node neighborhoods. Local explanations will be provided by Graph-
LIME via surrogate model approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK Point Cloud optimization 

Point Cloud, 

Lateral density, 

Direction density, 

Exposure time 

Optimal Point Cloud 

 

GM #17 GCNN + GraphSVX (Classification) 

Primary Model Learning Category Model Category 
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Graph Convolutional Neural 
Network 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification Convolutional GNNs 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level GraphSVX Decomposition based 

General Application 

A group of GNNs that perform convolutions by information propagation 
considering node neighborhoods. Local explanations will be produced by 
GraphSVX, by decomposing the model’s prediction into node and feature 

contributions using Shapley values. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK Point Cloud optimization 

Point cloud, 

Lateral density, 

Direction density, 

Exposure time 

Optimal Point Cloud 

 

Graph Attention Networks 

GM #18 GAT + ZORRO (Classification) 

Primary Model Graph Attention Networks 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification 
Graph Attention 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level ZORRO Perturbation based 

General Application GAT is a representative of spatial convolutional GNNs. Local explanations will be 

produced by ZORRO via perturbations of the input graph nodes features. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Anomaly Detection 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Prediction of unwanted 

situations 

WHR 
Understanding demand 

evolution / buying patterns 

Past sales, promotions 

and web visits 

sequential data 

Node importance, 

extraction of paths in 

the Graph 

CNH Anomaly Detection 

Historical data of 

electronic boards faults 

correlated to the 

Detection on which 

electronic board failed 
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average panel 

temperature 

 

GM #19 GAT + PGM-Explainer (Classification) 

Primary Model Graph Attention Networks 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification 
Graph Attention 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level PGM-Explainer Surrogate 

General Application 
GAT is a representative of spatial convolutional GNNs. Local explanations will be 

provided by PGM-Explainer via surrogate model approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Anomaly Detection 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Prediction of unwanted 

situations 

WHR 
Understanding demand 

evolution / buying patterns 

Past sales, promotions 

and web visits 

(sequential data) 

Node importance, 

extraction of paths in 

the Graph 

CNH Anomaly Detection 

Historical data of 

electronic boards faults 

correlated to the 

average panel 

temperature 

Detection on which 

electronic board failed 

 

GM #20 GAT + Guided BP (Classification) 

Primary Model Graph Attention Networks 

Learning Category Model Category 

Supervised  
Geometric Deep 

Learning 

Task  Algorithm Family 

Classification 
Graph Attention 

Networks 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level Guided BP Gradients/Features 
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General Application 
GAT is a representative of spatial convolutional GNNs. Local explanations for 

node predictions will be produced by Guided BP. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Anomaly Detection 

Machine 

Status/Warnings/Faults 

Production Counters  

Cycle Times 

Prediction of unwanted 

situations 

WHR 
Understanding demand 

evolution / buying patterns 

Past sales, promotions 

and web visits 

(sequential data) 

Node importance, 

extraction of paths in 

the Graph 

CNH Anomaly Detection 

Historical data of 

electronic boards faults 

correlated to the 

average panel 

temperature 

Detection on which 

electronic board failed 

 

4.3.2.2 Graph Representation Learning 

Graph Neural Networks & Autoencoders 

GM #21 VGAE + GNNExplainer (Clustering) 

Primary Model 
Variational Graph 

Autoencoder 

Learning Category Model Category 

Unsupervised  
Graph Representation 

Learning 

Task  Algorithm Family 

Clustering GNN & Auto-Encoders 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level GNNExplainer Perturbation based 

General Application 
A framework for unsupervised learning on graph-structured data based on the 

Variational Auto-Encoder. Local explanations will be produced by GNNExplainer 
via perturbations of the input graph nodes features. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Planning 

Generated 

constraints 

 Demand - Datamart 

 Availability parts 

 Monthly expected 

production 

Day / Month Production 

Planning 

WHR Demand Forecasting 
Previous and current 

product demand, 
Future product demand 
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web visits sequential 

data 

CNH Predictive Maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Prediction on which 

electronic board will fail 

soon 

 

GM #22 VGAE + PGM-Explainer (Clustering) 

Primary Model 
Variational Graph 

Autoencoder 

Learning Category Model Category 

Unsupervised  
Graph Representation 

Learning 

Task  Algorithm Family 

Clustering GNN & Auto-Encoders 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level PGM-Explainer Surrogate 

General Application 
A framework for unsupervised learning on graph-structured data based on the 

Variational Auto-Encoder. Local explanations will be provided by PGM-Explainer 
via surrogate model approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

FORD Production Planning 

Generated 

constraints 

 Demand - Datamart 

 Availability parts 

 Monthly expected 

production 

Day / Month Production 

Planning 

WHR Demand Forecasting 

Previous and current 

product demand, 

web visits sequential 

data 

Future product demand 

CNH Predictive Maintenance 

Historical data of 

electronic boards 

faults correlated to 

the average panel 

temperature 

Prediction on which 

electronic board will fail 

soon 

 

GM #23 DGI + Graph-LIME (Clustering) 

Primary Model Deep Graph Infomax 

Learning Category Model Category 

Unsupervised  
Graph Representation 

Learning 

Task  Algorithm Family 

Clustering GNN & Auto-Encoders 
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Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level Graph-LIME Surrogate 

General Application 
A general approach for learning node representations within graph-structured 
data in an unsupervised manner. Local explanations will be provided by Graph-

LIME via surrogate model approximation. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR Supporting promo initiatives 
Past sales, 

promotions and web 

visits sequential data 

Recommendations for 

promotional actions 

 

Random Walk based embeddings 

GM #24 Node2Vec + GNN-LRP (Clustering) 

Primary Model Node2Vec 

Learning Category Model Category 

Unsupervised  
Graph Representation 

Learning 

Task  Algorithm Family 

Clustering 
Random Walk based 

embeddings 

Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Instance-level GNN-LRP Decomposition 

General Application 
Random walk based Embedding methods are used to approximate some of the 

properties of a graph, including node centrality and similarity. Local 
explanations for node predictions will be produced by GNN-LRP. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

WHR 
Understanding customer 

behaviors 

Past sales, 

promotions and web 

visits sequential data 

Clustering of customer 

behaviors 

 

 

4.3.2.3 Graph Modelling 

GM #25 Graphical Modelling / FCM (Classification) 

Primary Model Graphical Modelling / FCM 

Learning Category Model Category 

Supervised  Graph Representations 

Task  Algorithm Family 

Classification Graph modelling 
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Explainability  
Explainability Category  Explainability Tool  Explainability Type  

Transparent Self-explained  Self-explained 

General Application Fuzzy-graph structures for representing causal reasoning. 

Application in demonstrators  

Demonstrator Manufacturing Scenario Inputs  Output 

UNIMETRIK 
Measurement plan 

parameter optimization 

Position, Direction, 

Lateral density, 

Direction density, 

Exposure time 

Measurement accuracy 

and/or tolerance 

Optimal measurement 

parameters 

 

4.4 Catalogue Overview 
As Section 4.2 and 4.3 conform the consolidated Baseline Models Catalogue, the following charts 

analyse the proposed methods. In this catalogue it has been described a total of 73 models, that can 

be grouped according to three different perspectives. They can be classified according to their 

category, their algorithm family and their explainability type. Regarding the learning category and the 

target tasks, the whole catalogue is split into learning category, algorithm family and explainability 

category. We have grouped all models to have an overview of the whole catalogue including both 

Hybrid ML models and Graph ML models.  

Although the explainability tools for hybrid ML proposed in the draft catalogue include mostly 

simplification and feature relevance tools, the use of other tools, such as explanations by example, 

has not been ignored. These types of tools will be considered during the experimentation in the 

different demonstrators in order to adapt to the data provided by the demonstrators, but at this point 

in the project, the tools that have been selected can a priori complement the proposed black box 

models without any problems. 

Regarding the “Learning Category” we have grouped the models in 48 hybrid algorithms and 25 graph 

algorithms. The 73 algorithms can be further classified as follows: 

• 63 supervised models. These supervised models are composed by 21 classification algorithms 

and 42 other algorithms for regressions tasks. 

• 10 unsupervised models. All of them are employed for clustering purposes. 
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Figure 10 Overview of XAI Baseline Models from a learning category perspective. 

 

Regarding the “Algorithm Family”, the cards are divided into: 

• 31 Machine Learning models. Several algorithms families constitute this category as follows: 

3 Decision Trees, 8 SVMs, 8 XGBoosts, 8 Random Forests, 2 Linear Models and 2 Neighbouring 

algorithms. 

• 17 Deep Learning models. This group is composed by 6 DNNs, 3 CNNs, 3 Autoencoders and 5 
RNNs. 

• 20 Geometric Deep Learning. This group is composed by 11 spatio-temporal GNNs, 3 Graph 
Attention Networks and 6 Convolutional GNNs. 

• 4 Graph Representation Learning. Composed by 3 Autoencoders and 1 Random Walk based 
embeddings. 

• 1 Graph Representation. Composed by 1 Graph Modelling. 
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Figure 11 Overview of XAI Baseline Models from an algorithm family point of view. 

 

Besides these two categories, the catalogue is analysed from an “Explainability Category” 

perspective: 

• 41 black-box models are explained by via post-hoc techniques. 

• 6 of the 73 models are transparent and do not need any explainability tools, as they are 

interpretable by design. 

• 2 models will provide explainability through hybrid architectures. 

• 24 instance-level as graph explainability models.  

 

 

Figure 12 Overview of XAI Baseline Models from an explainability category perspective. 
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5 Conclusions and Next Steps 
 

Deliverable 4.1 “Draft Catalogue of XMANAI AI and Graph Machine Learning Models” presents an 
overview of appropriate baseline models for the manufacturing domain and for the different pilot 
scenarios to be supported by the XMANAI solution, identifying their main structural components, 
inputs, outputs and potential application scenarios. The document is further elaborating and refining 
the design of graph machine intelligence algorithms and hybrid ML to be integrated in the XMANAI 
platform for knowledge extraction, business intelligence and analytics in the manufacturing domains 
tackled. This work will lead to a scenario where a subset of the models of the draft catalogue are easily 
integrated within the platform in order to be combined with the rest of the components by means of 
XAI pipelines. 

Based on a general analysis of the manufacturing landscape, this document analyses the 4 
manufacturing scenarios based on the demonstrator proposed scenarios. Four different 
manufacturing scenarios that solve the Use Cases necessities: Production Optimization, Product 
demand forecasting, Process/Product quality optimization, Process optimization and Semi-
Autonomous Planning, have been defined. Section 2 focuses on the investigation of different methods 
that have been proposed for manufacturing, following each potential application scenario. Following 
the manufacturing insights, there are still insufficient efforts towards the penetration of XAI in 
industry, being a field yet to be explored, while the real needs of XAI systems were identified. Through 
the analysis on the sections, it has been shown how Explainable AI (XAI) provides important insights 
that enhance the interpretability and explainability of the ML applications and redefine the black-
boxes approaches as grey-boxes. XAI techniques make the collaboration between humans and 
artificial intelligence more feasible, advance the human decision-making process and define an upper 
level of trust that is required for autonomous AI deployment. 

The identification of the different manufacturing scenarios (section 2) that fits on the execution of the 

demonstrators (section 3) has been mandatory in order to establish and elaborate the Baseline 

Models Catalogue that suits their needs. In Section 3, an overview of the different demonstrators has 

been presented as well as an identification of the problems to be solved. This task and process aims 

to understand the real needs of the manufacturers' explainable systems. 

Based on the manufacturing scenarios and demonstrators, a functional catalogue with selected 
baseline algorithms and models has been composed in order to populate the XMANAI Explainable AI 
Platform and support the needs of the potential manufacturing stakeholders. Following this approach, 
the versatility of the catalogue has been identified which is not limited to use specific methods for 
each scenario. Instead, it is possible to work with transversal methods using the same methods to 
solve different scenarios with common explainability needs. 

The next steps related to the XMANAI Machine Learning models will be to deepen the training of the 
baseline models to cover the real manufacturing scenarios of the demonstrators using their own data 
sources. In addition to this, the provision of rich explanations not only for data scientists but also for 
business experts is a key aspect to be taken into account in the next steps of WP4 activities. The next 
deliverables of this Work Package will also address the integration of the models within the XMANAI 
platform in order to be trained and tested in the demonstrator use cases. Therefore, the integration 
process will be developed closely with the other WPs dealing with the implementation of the platform 
(2, 3 and 5). 
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List of Acronyms/Abbreviations 
 

 

Acronym/ 
Abbreviation 

Description 

AE Auto-Encoder 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ANOVA Analysis Of Variance 

ARIMA Auto-Regressive Integrated Moving Average (univariate) 

ARIMAX Auto-Regressive Integrated Moving Average (multivariate) 

BP Back-Propagation 

B2B Business-to-Business 

CAM Class Activation Mapping 

CBLOF Clustering Based Local Outlier Factor 

CBM Condition-Based Maintenance 

CLSC Closed-Loop Supply Chain 

CMS Condition Monitoring System 

CNN Convolutional Neural Network 

CT Cycle Time 

DAG Directed Acyclic Graph 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

DCNN Diffusion- Convolutional Neural Network 

DFE Demand Forecast Effectiveness 

DGI Deep Graph Infomax 

DL Deep Learning 

DNN Deep Neural Network 

DP-RBFN Density Peak based Radial Basis Function Network 

DT Decision Tree 

D2C Direct-to-Consumer 

EDM Electrical Discharge Machining 

EWR Electrode Wear Rate 

FastABOD Fast-Angle-Based Outlier Detector 

FCM Fuzzy Cognitive Map 
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FE Finite Element 

FDM Fused Deposition Modelling 

FIS Fuzzy Inference System 

FTT First Time Through 

GA Genetic Algorithm 

GAN Generative Adversarial Network 

GAT Graph Attention Networks 

GBM Gradient Boosting Machine 

GCN Graph Convolutional Network 

GCNN Graph Convolutional Neural Network 

GCRN Graph Convolutional Recurrent Network 

GNN Graph Neural Network 

Grad-CAM Gradient-Weighted Class Activation Mapping 

HBOD Histogram-Based Outlier Detection 

HSIC Hilbert-Schmidt Independence Criterion 

IF Isolation Forest 

IHL Industrial Hospital Laundry 

kNN k-Nearest Neighbours 

LDOA Lightweight Detector Of Anomalies 

LOF Local Outlier Factor 

LRP Layer-wise Relevance Propagation 

LSTM Long Short-Term Memory 

MAD Mean Absolute Deviation 

MCD Minimum Covariance Determinant 

MER Material Erosion Rate 

MFAPM-EDM Magnetic Field Assisted Powder Mixed Electrical Discharge Machining 

ML Machine Learning 

MLP Multi-Layer Perceptron 

MSE Mean Squared Error 

NC Numerical Control 

NN Neural Network 

OCSVM One-Class Support Vector Machine 

ODP Operational Demand Plan 

PCA Principal Component Analysis 
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PGM Probabilistic Graphical Modelling 

PdM Predictive Maintenance 

PHM Prognosis and Health Monitoring 

PoF Physics-of-Failure 

PR-AUC Precision-Recall Area Under the Curve 

RF Random Forest 

R2F Run-To-Failure 

RMSE Root Mean Squared Error 

RNN Recurrent Neural Network 

RUL Remaining Useful Life 

SA Sensitivity Analysis 

SD Standard Deviation 

SHAP Shapley Additive Explanations 

SKU Stock-Keeping Unit 

SSD Single Shot multi-box Detector 

SSIM Structural Similarity Index 

SVC Support Vector Classifier 

SVM Support Vector Machine 

SVR Support Vector Regressor 

SWFS Semiconductor Wafer Fabrication System 

TGN Temporal Graph Networks 

TLBO Teacher-Learning-Based optimization 

VGAE Variational Graph Auto-Encoder 

WMAPE Weighted Mean Absolute Percentage Error 

WMPE Weighted Mean Percentage Error 

XAI eXplainable Artificial Intelligence 

XGBoost eXtreme Gradient Boosting 

 

 

 


