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1 Use Case Context 

The eXplainable MANufacturing Artificial Intelligence (XMANAI) Ford use case 
focuses on managing the complexity of manufacturing in large production lines. 
These lines are composed of multiple work stations that mostly work sequentially, 
creating a direct dependence among them. Moreover, each of the stations is also 
made up of diverse machines and assets, with interconnected processes that range 
from fully automated to manual labor. All this considered, in a manufacturing line 
there are numerous complexities and challenges that can arise, making it difficult 
to anticipate and address potential production problems effectively. For example, a 
minor problem undetected, and thus not solved, at an asset at the beginning of the 
line may propagate affecting with great impact to the subsequent stations at the end 
of the line, and creating bottlenecks that hamper to reach the production goals. These 
kind of difficulties emphasize the crucial need for developing intelligent systems to 
ensure that the objective quality and quantity of produced items reach each industry 
goal, while keeping the production times within a profitable margin; such systems 
should not only anticipate unwanted situations during production, but in order to 
help the line operators to make proper decisions to manage them, it is also of great 
relevance for them to know the root causes that may cause production deviations. 

The Ford use case has been designed in order to tackle these inherent complexi-
ties applying AI-based optimization systems, complemented with an explainability 
layer, applied on a real engine production line to monitor the overall standards that 
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are needed, and therefore minimizing deviations on the expected production. One 
of the main challenges addressed in this case is the high variability in engine types 
and their corresponding components. In an engine manufacturing facility, different 
engine derivatives are produced to meet the requirements of various vehicle models. 
Each engine type may require specific components, such as the engine crankcase, 
fuel pump, oil pump, clutch, and more. Managing the diverse range of components 
and ensuring their availability and correct installation on the assembly line can be 
a daunting task. The sheer number of engine types and components increases the 
likelihood of errors, delays, and production bottlenecks. 

Another complexity lies in the planning and scheduling of production batches. 
Currently, manual processes driven by the expertise of the MP&L (Material Plan-
ning & Logistics) team and production staff are employed to manage weekly pro-
duction batches. However, accurately determining the optimal batch size, sequenc-
ing, and allocation of resources is a complex task. The planning engineer relies on 
customer demand and their own experience to make decisions, which can result in 
suboptimal production plans and resource allocation. This can lead to inefficiencies, 
increased downtime, and compromised production capacity. 

Moreover, unforeseen issues and disruptions during the manufacturing process 
can significantly impact production efficiency. Shift foremen must make decisions 
on the fly to minimize planned stoppages and address unexpected failures on the 
assembly line. Without a comprehensive understanding of the root causes and 
potential solutions for such issues, decision-making becomes challenging, and it 
becomes difficult to maintain consistent line availability and performance. 

By developing AI models specifically designed for optimizing production on the 
engines line, these challenges can be effectively addressed. AI systems can analyze 
real-time and batch data simultaneously acquired from various systems to identify 
patterns, detect anomalies, and provide recommendations for line optimization. 
With advanced Machine Learning techniques, AI models can simulate different 
scenarios, predict the impact of changes, and suggest the best course of action to 
maximize line performance. These AI models can assist operators and engineers in 
making data-driven decisions, reducing errors, improving resource allocation, and 
minimizing downtime. 

Overall, the complexities and uncertainties inherent in engine manufacturing 
highlight the critical need for AI models to optimize production. By leveraging 
AI technologies, manufacturers can enhance their ability to anticipate and tackle 
potential problems, leading to increased efficiency, reduced costs, and improved 
overall performance on the assembly line. 

The current situation at Ford Engine Plant does not allow the power of quasi-real-
time data to be harnessed for decision-making. There are records on the status of the 
different operations on the production line, the quantity of engines produced and 
their parts, quality reports, and production plans. Despite having this information, 
there is not a centralized database and all the information is disaggregated in 
different corporate databases. This lack of centralized information is the first 
problem that needs to be solved in order to optimize the different processes that 
occur on the production line. This problem implies another one, which is the lack of
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artificial intelligence applied to the different decision-making processes due to the 
impossibility of taking advantage of all the available data. The proposed application 
aims to mitigate these problems by means of a set of functionalities that will be 
explained in the following sections. 

This use case consists of a set of actions related to the current status of the line 
within a shift. By means of the information provided by the different disaggregated 
data sources, it is possible to analyze this information jointly to establish trends 
and to make predictions about anomalous situations in the line or the total amount 
of produced engines at the end of the shift. Thus, this use case is focused on the 
estimation of the production at the end of the shift, detection of unwanted scenarios, 
and simulations of new hypothetical situations, while giving insights on the assets 
that may cause potential deviations regarding the expected production goals. 

Ford internal databases have different information about the status of operations 
(whether an operation is cycling a new component, waiting for a new part, blocked 
or in another possible state), operation failures, cycle times (both actual and design 
time), number of parts produced in a shift and data related to the quality of the 
parts produced. In this use case, different data sources related to production data 
will be joined to represent the historical status of the production line and to make 
predictions about the number of engines produced at the end of the shift following 
the current trend of the line. Both information will help the business experts 
to understand the significant deviations that may occur between the predicted 
(planned) production and the actual engines produced at the end of the shift. 

2 XAI Approach 

The application of explainability techniques is not a merely technical process, since 
explainability is precisely the bridge that connects intelligent systems with the 
users who are using them. Therefore, it is important that the end-users of XAI 
solutions are involved in the design process of explainable systems, looking for a 
human-in-the-loop approach to be followed. Therefore, in order to provide a solid 
explainability layer to the AI system developed in relation to the Ford use case, two 
key activities were carried out prior to the development of the XAI models. 

The initial activity involved identifying the specific XAI needs of the end-users, 
i.e. the operators of the engine production line. This step is crucial in understanding 
the requirements and preferences of the stakeholders who will be interacting with 
the AI system. By closely collaborating with the end-users, their expectations and 
concerns regarding the interpretability of the AI models are effectively captured. 
This process ensures that the subsequent selection of Machine Learning models and 
explainability tools is aligned with the identified needs of the end-users. 

Consequently, the second activity focused on selecting the appropriate methods 
that fulfills the identified XAI needs. Drawing from a range of available techniques, 
the selection process took into consideration the specific requirements and con-
straints of the manufacturing problem. The chosen methods were evaluated based
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on their capability to provide interpretable insights into the decision-making process 
of the AI models. Through this meticulous selection process, the chosen methods 
effectively address the XAI needs identified during the initial activity. 

By conducting these two activities, the system can ensure that the AI and 
explainability aspects of the demonstrator are tailored to the requirements of 
the end-users at the plant. This approach fosters a collaborative and user-centric 
approach, guaranteeing that the selected methods provide meaningful and actionable 
explanations. Ultimately, the identification of explainability needs and the subse-
quent selection of appropriate methods enable the development of explainable AI 
models that empowers plant personnel to understand and trust the decisions made by 
the AI models, facilitating effective decision-making and driving the optimization 
of manufacturing processes. 

2.1 Identification of XAI Needs 

Prior to the development of XAI models, several tasks need to be addressed to 
effectively solve the intended problem. The general workflow follows the next steps. 

The initial step is identifying the relevant data sources and determining the 
technical requirements necessary for data collection, storage, and processing. This 
involves understanding the data ecosystem within the manufacturing environment, 
including sources such as corporate systems, maintenance records, tooling systems, 
and real-time data acquisition. Concretely, for this problem, the data employed are 
related to the status of the production of the line and quality data. 

Next, it is essential to assess the AI needs specific to the manufacturing problem 
at hand. This includes identifying the key challenges and objectives, such as 
optimizing production, minimizing downtime, and improving resource allocation. 
Understanding the desired outcomes helps in defining the scope and purpose of 
the AI models to be developed. The objective for this problem consists on finding 
deviations from the expected productions and preventing line bottlenecks. 

Simultaneously, it is important to recognize the explainability needs of the 
stakeholders involved. This entails considering the requirements for transparency, 
interpretability, and trust in the decision-making process. Different stakeholders 
may have varying levels of expertise and understanding of AI systems, so it is 
crucial to determine the appropriate level of explanation needed to ensure effective 
collaboration and decision-making. For this problem, it is essential to understand 
which elements of the line and to what degree they have influenced predicted 
deviations and analyze the best action to fit it. 

By applying XAI models, several advantages can be achieved in the manufactur-
ing context. The foremost advantage is that the end-user involved in the production 
lines will be able to make better decisions based on results of the analysis of the 
available data and understand why these results are originated, in terms of knowing 
the specific assets that have the most influence on them.
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Fig. 1 Identification of AI and explainability needs for the use case 

The combination of XAI models and their advantages opens up significant 
business opportunities in this use case. Specifically, the application of XAI models 
will affect positively the line in two aspects: firstly, the line will increase its 
availability, preventing line bottlenecks by quick fixing issues that can affect the 
whole production, and secondly, the efficiency of the production will also be 
increased, by reducing unnecessary maintenance stops. 

Overall, the tasks preceding the development of XAI models involve identifying 
data sources, technical requirements, AI needs, explainability needs, recognizing 
the advantages of using XAI models, and uncovering the resulting business oppor-
tunities. In Fig. 1, a diagram of the whole identification process is presented. 

By addressing these aspects, it is possible to identify which Machine Learning 
Models and explainability tools meet the XAI needs of the demonstrator as it is 
explained in the next section. 

2.2 Hybrid Models 

In the context of the XMANAI project, a hybrid model [2] refers to the combination 
of two components: a Machine Learning model and an explainability tool used to 
interpret the results produced by the Machine Learning model. 

The component with the Machine Learning model is responsible for learning 
patterns and making predictions based on input data. It leverages algorithms and 
techniques to extract information, generalize from training examples, and generate 
predictions for new data instances. The Machine Learning model may include 
various approaches such as decision trees [3] or random forests [4]. 

On the other hand, the component with the explainability tool is employed 
to provide insights into the decision-making process of the Machine Learning 
model. It helps to uncover the underlying factors, features, or patterns that influ-
ence the model’s predictions. The explainability tool enhances transparency and 
interpretability by providing explanations, visualizations, or metrics that shed light 
on how the Machine Learning model arrives at its results.
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Fig. 2 Ford experiment diagram 

By combining these two components, the hybrid model aims to address the 
“black box” nature of some Machine Learning algorithms, providing added trans-
parency. The explainability tool provides insights into the most relevant features on 
a specific prediction, the relative contributions of those features, and how they have 
impacted on the final model decision. 

Since the goal of this approach is the development and training of a model for 
the estimation of the production at the end of a shift, a regression model has been 
determined to be a good fit to solve the problem, and thus it has been selected for that 
purpose. As this estimation is a regression task, this model can be employed to that 
end and the output prediction of the system will be the number of engines produced 
at the end of one production shift. Based on the comparison of this prediction with 
regard to the expected production, the plant manager and the operators will be able 
to make decisions to correct potential deviations. 

In order to solve this use case, an experiment based on the architecture shown 
in Fig. 2 has been built in order to configure the use case assets and train the 
AI model. From left to right, the use case data asset will be generated retrieving 
operation data directly from the different production line stations of the engine 
assembly line. Those assets will feed the Machine Learning pipeline performing 
a regression prediction on the number of engines that will be produced at the end 
of the shift. Different ML predictive models have been evaluated to analyze which 
of them provide more accurate results. Finally, Random Forest was selected as the 
most suitable AI base-model for this goal. 

Therefore, the explainability requirement of this problem is to understand 
what elements and how much have influenced the deviation so as to infer the 
root causes of the deviation as mentioned above. Considering the explainability 
requirement, LIME [8] has been selected as the optimal XAI Tool due to its feature 
contribution explanation, which gives much value to the model explanation in this 
use case scenario. Local Interpretable Model-Agnostic Explanations (LIME) is an
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explainability tool that provides interpretable explanations for individual predictions 
made by Machine Learning models. It creates local surrogate models to approximate 
the behavior of the original model, generating feature importance weights that 
indicate the relative influence of each input feature. LIME is model-agnostic, 
making it applicable to various models without requiring access to their internal 
workings. Its explanations enhance transparency and understanding, fostering trust 
in complex Machine Learning systems. 

Taking into account the selected Machine Learning model and the explainability 
tool, the expected output of the ML pipeline is a prediction which indicates the 
expected performance of the production at the end of the shift, which ultimately 
will be compared with the actual production goals to prevent potential deviations. 
Thus, the explanations given should help to understand what the key elements are 
and how much they have influenced on production deviations, and supporting the 
end-users to infer root causes that could be tackled to minimize the impact. 

2.2.1 Interpretation of XAI Outputs 

Using a Random Forest as a model and LIME as an explainability tool, an example 
of explainability is shown in Fig. 3 where an entire shift of production is analyzed to 
estimate the production of the current shift through the regression of the input data. 

On the left side, it can be seen that the model predicts a value of 19.16. This value 
has to be interpreted as the average value of engines produced by the line in time 
intervals of 10 minutes. For this use case, values in the range between 15 and 20 are 

Fig. 3 Lime explainability result example. On the left side, it is shown the ML prediction 
information. On the right side, it can be see, the contributions (both positive and negative) of 
the different input features
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considered as proper values, representing a nominal behavior of the line. When the 
value is lower than 15, a deviation from the expected value has to be considered. 

On the right side, the information provided by the LIME explainability tool 
is presented. As this technique consists on a feature relevance representation, the 
different rows in the diagram represents the input features, coming from the input 
data used for this concrete prediction, that are contributing the most to this concrete 
output and in what degree they are contributing. The negative or positive side 
represents how much they are affecting to an upper o lower value from the average 
output value of the training data employed to train the model. 

2.3 Graph Machine Learning Models 

Graph Machine Learning (Graph ML) [7] models are a class of Machine Learning 
algorithms designed to operate on structured data represented as graphs. In contrast 
to traditional Machine Learning approaches that work with tabular data or sequential 
data, graph ML models leverage the inherent relational information present in graph 
structures to make predictions or gain insights. 

Graph ML models are particularly suited for tasks that involve complex rela-
tionships and dependencies among data points. They find applications in various 
domains, including social network analysis, recommendation systems, bioinformat-
ics, fraud detection, knowledge graph completion, and many more [10]. 

This topology of models can be correlated with the complex structure of 
interconnected processes present at production plants of manufacturing industries. 
Thus, a research line within XMANAI has been dedicated to determine the fit of 
this type of approach to provide IA-based predictive models adapted to the specifics 
of manufacturing considering the addition of an explainability layer. Specifically, 
among our experiments with the data, Heterogeneous Graph ML models were 
selected as they are focused on Explainability. After a research among different 
beyond-state-of-the-art options, we were inclined to use in this case Tensorflow 
GNN (TFGNN) [5]. This library is capable of handling Heterogeneous Graphs to fit 
a dynamic number of nodes and edges, with different node classes and edge classes, 
and their own set of data. This also leverages Tensorflow’s [1] graph execution, 
which speeds up the training and inference process, allowing for faster iteration and 
less waiting time. 

2.3.1 Graph Models 

Graph models offer distinct advantages over regular models in the context of 
predicting the output of a manufacturing line. By leveraging the inherent relational 
structure present in the data, graph models can incorporate contextual information 
and capture the interdependencies between different components. Manufacturing
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lines often exhibit complex relationships, such as cascading effects or feedback 
loops, which graph models excel at representing and exploiting. Additionally, graph 
models can effectively utilize both the graph topology and the node-level features 
associated with each component, enabling them to learn embeddings that encode 
intrinsic properties and interactions. 

The transferability capabilities of graph models allow them to generalize knowl-
edge across different manufacturing line states with shared characteristics. Further-
more, graph models provide interpretability and explainability by analyzing learned 
embeddings and the influence of components on the output. 

GNNs have gained significant attention in recent years due to their ability 
to capture both the local and global structural information of the graph. They 
leverage a combination of node-level features, graph topology, and message passing 
mechanisms to update the representations of nodes throughout the network layers. 
GNNs can learn expressive node embeddings that encode both the inherent features 
of the nodes and their relationships with neighboring nodes. 

During the training stage of the graph ML models, they are often optimized using 
gradient-based methods, where the gradients are computed through backpropaga-
tion. Graph ML models can be trained in a supervised manner, where labeled data 
is available, or in an unsupervised or semi-supervised manner, where only a subset 
of the data is labeled or no labels are available. 

Graph ML models can provide various types of outputs that capture different 
aspects of the graph data. For example, in node classification tasks, the model may 
assign a label or class to each node in the graph, indicating the predicted category 
or behavior of the corresponding entity. Graph ML models can also generate 
outputs related to link prediction, where they estimate the likelihood or presence 
of connections between nodes in the graph. Additionally, graph ML models may 
produce node embeddings or representations that capture the learned features and 
relationships of each node, enabling downstream tasks or further analysis. 

In the scenario analyzed, we work on temporal slices of the manufacturing line 
and we will be predicting the output at the final slice of the manufacturing line, 
encoded in the graph training as an attribute of the nodes. This has been proven to 
be possible, per example by Google in their paper [6], where they improved the state 
of the art by reducing the loss by 6% (using RMSLE). 

2.3.2 Explainability Techniques 

For the explainability, we used Graph ATtention (GAT) [9] layers to collect the 
weight that each input is given by the model. Graph Machine Learning not only 
allows us to adapt both the inference and explainability to the layout of the 
manufacturing process when operators are added or removed, but it also allows the 
model to have more contextual information about what operators are connected or 
what kinds of data there is, which in the end, this improves the accuracy of the 
model and explanations
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Fig. 4 Graph ML GAT contribution weights full graph. Brighter colors and wider edges means 
greater contribution 

Upon completion of training and explanation, we obtain a graph that depicts the 
manufacturing line, including all the relationships between its components and their 
respective importance. 

In Fig. 4, we present a visualization that represents the connections between 
operators (green dots) and teams (red dots) in our project. The relevance of each 
node is indicated by the darkness of its color, with darker colors indicating less 
relevance and brighter colors indicating more relevance. The size of the edges 
connecting the nodes also represents the strength of the connection, with larger 
edges denoting more relevant connections. 

Specifically, the green dots represent operators, and a connection between two 
green dots implies that those operators are connected in line, with the next operator 
receiving the output of the previous one. Similarly, the red dots represent teams, 
and connections between red dots indicate that one team receives the output of the 
previous team’s work. Additionally, there are connections between the red and green 
dots, indicating which operators belong to which team. 

Figure 5 is a modified version of the first graph, where we have removed some of 
the less relevant connections. This filtering process results in retaining only groups 
of highly influential operators, represented by the remaining connections. 

The utility of presenting this information to a user is that it provides a clear 
understanding of the relationships and dependencies between operators and teams 
in the project. By visualizing the graph, the user can identify the most relevant 
operators and teams based on their brightness and the size of their connections. This 
information helps in understanding the flow of work, identifying key contributors, 
and potentially optimizing the project by focusing on the most influential aspects.
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Fig. 5 Graph ML GAT contribution weights trimmed graph to only highest contributors. Brighter 
colors and wider edges means greater contribution 

By removing less relevant connections in the second graph, the user can quickly 
grasp the core components and key dependencies, simplifying the visualization and 
highlighting the most critical elements. This focused view is simpler and straighter. 

Finally, if this were to be too hard to understand for users, this has the potential 
to be added in a map of the line to better represent the positions of each team and 
operator. 

3 XMANAI Platform Usage 

All training of Hybrid models and the exploration of the available data is performed 
under the XMANAI platform. For this, Ford uploads their datasets to the platform, 
ensuring the data’s security and privacy by sharing it under a contractual agreement 
while retaining ownership. 

The platform provides tools for visualizing the data, allowing us to gain insights 
and understand its characteristics. After visualizing the data, we can further explore 
the problem and develop solutions using notebooks available on the platform, 
leveraging its computational capabilities and pre-built libraries. 

To create a hybrid model and explainable artificial intelligence (XAI) tool, we 
can upload their model and associated artifacts to the platform. We can configure 
the model with its hyperparameters with a viable explainability tool, and fine-tuning 
them to achieve optimal performance. The output is a session which will be used for 
training, and that will ensure that the model can always be used with the selected 
explainability tool.
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After creating the session, we can use the platform’s pipeline functionality 
to establish a streamlined process for training both the model and the explainer 
component. 

Once the pipeline is set up, Ford can run it whenever they wish to make inferences 
or predictions based on the trained model. The pipeline ensures consistent and 
automated execution, saving time and effort. 

Finally, we can visualize the explanations provided by the XAI tool through the 
platform’s visualization capabilities. This allows them to gain interpretability and 
insights into how the model arrived at its predictions, aiding in decision-making and 
model validation. 

4 Achievements, Conclusions, and Open work lines 

In the following paragraphs, we will delve into the accomplishments we have made 
in the areas of data veracity, data ingestion automation, data processing and analyt-
ics, hybrid and graph model development, explainability methods, manufacturing 
app creation, and infrastructure enhancement. 

In terms of data veracity, we have allocated a team of programmers to thoroughly 
review and ensure that all machines adhere to the standardized manufacturing data 
reporting. This serves as the starting point for all other aspects, as the availability of 
accurate data is paramount. Without reliable data, we cannot construct models that 
accurately represent the reality of our manufacturing processes. 

We have also made significant progress in automating the data ingestion process. 
Previously done manually, the data ingestion is now automated, creating dumps 
of data periodically and producing new batches of data that can be used to retrain 
existing models. 

Our focus on data processing and data analytics has involved extracting features 
from different datasets and determining the best approach for ingesting the input 
data to achieve relevant results. 

Furthermore, we have been actively working on developing hybrid models that 
combine machine learning algorithms with explainability tools. Specifically, we 
have utilized Local Interpretable Model-Agnostic Explanations to create explana-
tions that help identify the parts of the production line that are affecting specific 
predictions. Alongside this, we have also been working on graph models that 
provide explanations in a similar manner to our hybrid models. 

Additionally, we have utilized the eXplainable MANufacturing Artificial Intel-
ligence platform to develop a manufacturing app, as described in Sect. 3. This app 
has been designed for use by demonstrators in their respective use cases. 

To accommodate the on-premise segment of the platform and effectively host the 
entire backend infrastructure for our final applications, we have recently acquired a 
dedicated physical server. This acquisition ensures efficient and reliable hosting for 
our platform.
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In conclusion, our achievements in data veracity have ensured a solid foundation 
for our manufacturing processes by guaranteeing accurate and reliable data. This 
has enabled us to construct models that accurately represent the reality of our 
operations. The automation of data ingestion has not only saved valuable time 
and resources but also provided us with fresh batches of data for continuous 
model improvement. Our focus on data processing and analytics has allowed us 
to extract meaningful insights and achieve relevant results. The development of 
hybrid and graph models, coupled with explainability tools, has enhanced our 
understanding of predictions and identified the specific factors influencing them. 
The implementation of explainability methods has increased transparency and trust 
in our models’ outputs, empowering us to make informed decisions. Furthermore, 
the creation of the manufacturing app has facilitated streamlined processes and 
improved collaboration among demonstrators in their respective use cases. Lastly, 
our investment in infrastructure, including the acquisition of a dedicated physical 
server, ensures a robust and efficient hosting environment for our final applications. 

As we look toward the future, one of our key objectives is to bridge the gap 
between scientific explanations and end-user accessibility. While our current focus 
on developing explanations has been rooted in scientific rigor, we recognize the 
need to make these explanations more comprehensible and user-friendly for a non-
technical audience. Our next step involves refining and adapting the explanations 
derived from our models, transforming them into a format that is easily under-
standable and meaningful to end-users. By translating complex technical concepts 
into accessible language and visualizations, we aim to empower the end-users 
to make informed decisions and derive maximum value from our manufacturing 
processes. This user-centric approach will enable us to deliver explanations that 
not only provide scientific insights but also serve as practical tools for enhancing 
productivity, efficiency, and overall business profitability. 
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